
BALKANJM 01 (2013) 1-15 

 
A Hierarchical Supply Chain Planning Model for a Perishable Item with 

Stochastic Lifetime 
Hande Gunay Akdemir*a and Fatma Tiryakib 

aVize Vocational Community College, Kirklareli University, Kirklareli, Turkey 
bDepartment of Mathematics, Yildiz Technical University, Istanbul, Turkey. 

 

ARTICLE INFO 
 

ABSTRACT 
Article history: 
Received 16 December 2012  
Accepted 16 January 2013 
Available online 6 February 2013 

 

This paper focuses on distribution of a perishable product in a 
hierarchical supply chain. Due to changeable conditions and the 
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1. Introduction and literature review 

Supply chain is a system consisting of suppliers, manufacturers, distributors, retailers, 

and transporters who act in a coordinated manner to accomplish product development, 

marketing, distribution and warehousing tasks and wish to provide a competitive advantage.  

Supply chain management related problems involve uncertainty due to unexpected failures 

and fluctuations in parameters. The impact of volatility can be captured by using probability 

distribution functions that are statistically calculated from historical data. Stochastic 
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programming is a technique based on statistical decision theory and concerned with 

computationally difficult problems under uncertainty.  

A government in a distribution network, a service provider in a communication market 

or a supplier in a supply chain acts as a leader and makes his decision first. As followers, 

users of those networks, competitors or retailers use that decision as an input to form their 

strategies. Multi-level programming and game theory address that kind of hierarchical 

decision making problems and try to find Stackelberg (equilibrium) solutions.

According to Patriksson and Wynter [21], there exists uncertainties in almost all 

applications of hierarchical problems and neglecting to take into account or simplifying that 

uncertainty can result costly. Sakawa and Katagiri [25] dealt with bilevel linear programming 

problems involving random variable coefficients by using chance constrained programming 

and interactive fuzzy programming. Cromvik and Patriksson [6] gave interesting applications 

of hierarchical optimization problems with uncertain data. Özaltın et al. [20] introduced a 

stochastic extension of the bilevel knapsack problem where the leader's 0-1 decisions cause 

uncertainty on the follower's knapsack capacity considering only a finite set of scenarios. de 

Kok and Muratore [7] modeled the problem of coordinating and optimizing a supply chain for 

items with stochastic demand as a bilevel program assuming that each player will implement 

a just in time policy to minimize their total costs. Ryu et al. [24] addressed a bilevel decision-

making problem under uncertainty in which the first level decision maker manages 

distributions, and the second level decision maker is responsible for production in a supply 

chain. They presented a solution method based on parametric programming. Roghanian et al. 

[23] discussed the same problem, but they tackled uncertainty by using chance constrained 

programming, where constraints may not be satisfied at most some probability. Kalashnikov 

et al. [12] presented a bilevel multi-stage stochastic optimization model development to 

balance fuel volumes over a distribution network of natural gas supply chain with random 

unit prices and demands. In their model, the natural gas shipping company is considered as 

the leader, and the pipeline operating company is considered as the follower.  

Cheng et al. [4] presented a bilevel pricing and ordering model between the 

manufacturer and the retailer for a uniformly distributed product demand and considered 

CVaR (conditional or average value-at-risk) measure as the retailer’s objective. Revenue 

management has become a great tool to obtain optimal price for perishable items with limited 

capacity in several industries including airlines, hotels, car rentals, and concert organizations. 

A comprehensive pricing model must involve stochastic, dynamic and game theoretic 

elements [5]. Two-level stochastic pricing problems can be also found in [2, 13]. 
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In this article, we deal with distribution of a perishable product in a hierarchical supply 

chain under stochastic environment. Some typical examples of short sales cycle perishables 

are fresh vegetables or exotic fruits, bread, milk or dairy products, fresh flowers, fresh fish or 

seafood, meat and frozen foods. By definition, perishables deteriorate and become unusable 

over a period of time or if exposed to heat, humid or cold air. Consumers prefer long 

remaining shelf-life products with high quality and taste in every season. The quality of a 

perishable product decreases rapidly once it is produced and keeps decaying during storage 

and transportation [3]. Quality loss is a function of both time and temperature. Abuse can 

result from temperatures in both extremes. For instance, high temperatures cause microbial 

growth; low temperatures can cause freezing injury, such as discoloration, pitting and off-

flavors. More expensive and consuming temperature-controlled vehicles are designed to keep 

perishable products as fresh as possible during the delivery processes. The producer’s benefit 

increases by using of refrigeration to maintain quality and extend shelf-life. But, high 

seasonality increases overall costs of transportation [1]. Due to changeable conditions and the 

perishable feature of the product, lifetime can be characterized as uncertain [8].  

The literature regarding two stage or two level supply chain of perishable product 

problems involving uncertain (random or fuzzy) parameters can be roughly classified into two 

groups; (i) the newsboy or newsvendor models and extensions: optimal pricing and ordering 

with fixed or random lifetime perishable product, and with known or uncertain demand, and 

inventory problems with or without return (buy-back) or revenue-sharing policies [9-11, 14, 

16, 18, 19, 22, 26], (ii) production and distribution scheduling, vehicle routing problems with 

or without time-window constraints [3, 15]. 

2. Hierarchical programming problems  

Bilevel programming (BP) (leader-follower) problems are often considered as 

hierarchical models or Stackelberg games, in which one player (the leader) has the privilege 

to play first and announces his decision before the other player (the follower). In BP, the set 

of decision variables is partitioned between two vectors x  and y . The first level decision 

maker (the leader) controls over the vector x ∈ m ,  and the second level decision maker (the 

follower) controls over the vector y ∈ n . The BP problem can be formulated as: 
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min
x,y
F (x,y)

subject to G(x,y) ≤ 0
where y solves
min
y
f (x,y)

subject to g(x,y) ≤ 0

"
#
$

%$

           (1) 

where upper-level variables x ∈ m ,  lower-level variables y ∈ n , upper-level objective 

function F :m ×n→,  lower-level objective function f :m ×n→,  for upper-level 

constraints the vector-valued function G:m ×n→r  and for lower-level constraints the 

vector-valued function g :m ×n→s.  

By replacing the second level problem with its KKT optimality conditions, the 

equivalent single level program of the BP problem (1) follows as: 

min
x,y,λ

F (x,y)

subject to G(x,y) ≤ 0
g(x,y) ≤ 0

∇y f (x,y)+λ
T∇yg(x,y) = 0

λigi (x,y) = 0, i =1,…,s
λi ≥ 0, i =1,…,s

 

where λ ∈ s  is the vector of Lagrange multipliers.  
A generalization of the BP problem is called Mathematical Programming with 

Equilibrium Constraints (MPEC) problem that includes first order optimality conditions of 

another programming problem in its constraints. Stochastic MPEC is defined as a stochastic 

extension of the MPEC. Two types of formulations have been considered for Stochastic 

MPEC problems [17]. In lower-level wait-and-see formulation, the leader chooses his 

decision without knowing which way the random event is going to result and the follower 

made his decision after the random event ω  is observed: 

( ) ( , )ω ω→ →x ξ y x  

In here-and-now formulation, the leader and the follower decide before the random 

event ω  is observed:  

( ) ( ) ( )ω ω→ → →x y x ξ z  
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by introducing the recourse variables .z  

3. Assumptions, notations and model formulation 

In our model, single perishable product subject to continuous decay (not constant shelf-

life) is considered. Given customer demands, we assume that lifetime or expiration age of the 

product is a continuous stochastic variable with known distribution function. 

Suppose, there is a leader-follower relationship between the supplier (manufacturer) and 

the retailer, also they have an agreement to fulfill their customers’ demands according to 

known demands and prices beforehand. We suppose that harvesting or production sites are 

governed by the leader and distribution centers are operated by the follower. We assume that 

as the leader, supplier or manufacturer first determines how much perishables he produces or 

supplies, and then dispatches them to retailer’s distribution centers. The leader chooses his 

quantities to minimize his transportation cost while satisfying capacity and demand 

requirements. Afterwards, the follower (retailer) determines his quantities send to customers 

from his distribution centers by considering leader’s decision, capacity and demand 

requirements.  

It is also important to transport the perishable product as fresh as possible for the 

follower. Customers discard spoiled product, so the follower has to bear perishing cost which 

includes waste disposal cost and replenishment cost in customer zones. Shortage and 

backlogging are allowed, but penalized since customer demand cannot be met if the product 

perishes. Inventory holding and oversupply are not allowed due to perishable nature of the 

product. Travel times between supply chain echelons and reloading times are known in 

advance. While the follower’s objective is to minimize the sum of corresponding total 

transportation cost and total expected perishing cost, the leader’s objective is only to 

minimize the sum of corresponding total transportation cost. 

The notation used in our model is as follows: 

3.1. Indices 

i , index of production sites, where i =1,…, I , I  is the number of production sites; 

j , index of distribution centers, where j =1,…,J , J  is the number of distribution centers; 

k , index of customers, where k =1,…,K , K  is the number of customers. 
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3.2. Capacity and demand parameters 

ia , production or harvesting capacity of production site i ; 

jb , capacity of distribution center j ; 

kd , demand of customer .k  

3.3. Cost parameters 

ijc , unit transportation cost from production site i  to distribution center j ; 

jke , unit transportation cost from distribution center j  to customer k ; 

kPC , unit perishing (outdate) cost of the product at customer zone k . 

3.4. Time parameters 

T , random lifetime of the product with distribution function Φ•(.) ; 

ijt , age of the product transported from production site i  to distribution center j ;  

,τ j  unloading and reloading (processing) time in distribution center ;j  

jkT , deterministic transportation time for route ( , )j k  

,θ τ= + +ijk ij jk jt T  total time the product spends on route (( , ), )i j k .  

3.5. Decision variables 

0≥ijx , decision variables of the leader, amount of the product that is to be produced and 

delivered from production site i  to distribution center j ; 

0,≥ijky  decision variables of the follower, amount of the product that is to be delivered to 

customer k  through route ( , ).i j  

3.6. The objective function of the follower 

As a risk neutral decision maker, the follower’s objective is to minimize the sum of 

corresponding total transportation costs; 

1 1 1= = =
∑∑ ∑
J K I

jk ijk
j k i

e y
 

and total expected perishing costs;  
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1 1 1 1 1 1
Prob{ ( )} ( )

I J K I J K

k ijk ijk ijk k ijk ijk ijk
i j k i j k

PC T y y PC yθ θ
= = = = = =

≤ = Φ∑∑∑ ∑∑∑  

such that  

, 0
( )

0, 0
ijk ijk

ijk ijk
ijk

y
y

y

θ
θ

>⎧⎪
= ⎨

=⎪⎩
 

which generates a non-zero value if there exists a shipment on route (( , ), ).i j k  If random 

lifetime of the product is less than or equal to the total time that the product spends in the 

system ijkθ , then the product perishes.  

3.7. The here-and-now formulation 

The here-and-now formulation suits our case, since the leader and the follower should 

decide before the product perishes. In order to obtain the Stackelberg solution, the following 

model must be solved: 

min
xij ,yijk

cij xij
j=1

J

∑
i=1

I

∑

subject to xij
j=1

J

∑ ≤ ai i =1,…, I

xij
i=1

I

∑ ≤ bj j =1,…,J

xij ≥ 0 i =1,…, I; j =1,…,J

min
yijk

e jk yijk
i=1

I

∑
k=1

K

∑
j=1

J

∑ + PCk Φijk (θijk ) yijk
k=1

K

∑
j=1

J

∑
i=1

I

∑

subject to yijk
k=1

K

∑ = xij i =1,…, I; j =1,…,J

yijk
j=1

J

∑
i=1

I

∑ = dk k =1,…,K

yijk ≥ 0 i =1,…, I; j =1,…,J ;k =1,…,K

 

where  
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1 1 1 1 1 1 1 1 1

1 1 1 1 1 1

( ) ( ) ( )

( )

θ

ω

= = = = = = = = =

= = = = = =

= + Φ + −

+ − −

∑∑ ∑ ∑∑∑ ∑ ∑∑

∑∑ ∑ ∑∑∑

J K I I J K K I J

jk ijk k ijk ijk ijk k ijk k
j k i i j k k i j

I J K I J K

ij ijk ij ijk ijk
i j k i j k

L e y PC y u y d

v y x y

y,u, v,ω
 

is the Lagrange function for the second level and the variables , ,k ij ijku v ω  are the Lagrange 

multipliers for 1, , ; 1, , ; 1, ,i I j J k K= = =K K K . When the variables ijkω  are vanished, then 

KKT conditions of the second level problem become: 

e jk + PCk Φijk (θijk )+uk + vij ≥ 0, for i =1,…, I; j =1,…,J ;k =1,…,K

yijk (e jk + PCkΦijk (θijk )+uk + vij ) = 0, for i =1,…, I; j =1,…,J ;k =1,…,K

yijk
k=1

K

∑ = xij , for i =1,…, I; j =1,…,J

yijk
j=1

J

∑
i=1

I

∑ = dk , for k =1,…,K

yijk ≥ 0. for i =1,…, I; j =1,…,J ;k =1,…,K

 

Thus, the equivalent single level programming problem is derived as: 

min
xij ,yijk

cij xij
j=1

J

∑
i=1

I

∑

s.t. xij
j=1

J

∑ ≤ ai i =1,…, I

xij
i=1

I

∑ ≤ bj j =1,…,J

xij ≥ 0 i =1,…, I; j =1,…,J

e jk + PCk Φijk (θijk )+uk + vij ≥ 0 i =1,…, I; j =1,…,J ;k =1,…,K

yijk (e jk + PCkΦijk (θijk )+uk + vij ) = 0 i =1,…, I; j =1,…,J ;k =1,…,K

yijk
k=1

K

∑ = xij i =1,…, I; j =1,…,J

yijk
j=1

J

∑
i=1

I

∑ = dk k =1,…,K

yijk ≥ 0 i =1,…, I; j =1,…,J ;k =1,…,K

 

When the leader first announces his decisions ijx ’s, then decision variable vector of the 

leader is become known. As a follower, the retailer takes the supplier’s optimal decision as an 
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input to establish his best response. Every combination of the follower’s reaction is 

alternative optimal for the leader, since the leader’s objective function does not contain the 

variables ijky . 

Assuming that ijx ’s are fixed, the KKT conditions of the second level problem are the 

same as in the classical transportation problem from I J× sources (supply points) to K  

customers with cost minimization. It can be solved with transportation simplex method. But, 

unit transportation costs should be revised as: 

(( , ), ) ( ).θ= + Φjk k ijk ijkCost i j k e PC  

4. Proposed solution method 

Step 1. Solve leader’s problem on relaxed feasible region (minimize the leader’s objective 

function subject to the first and the second level constraints). The optimal solution is * *( , )ij ijkx y  

Step 2. Calculate each (( , ), ) ( ).θ= + Φjk k ijk ijkCost i j k e PC   

Step 3. Solve the follower’s transportation problem: 

min
yijk

Cost((i, j),k)yijk
k=1

K

∑
j=1

J

∑
i=1

I

∑

subject to yijk
k=1

K

∑ = xij
* i =1,…, I; j =1,…,J

yijk
j=1

J

∑
i=1

I

∑ = dk k =1,…,K

yijk ≥ 0 i =1,…, I; j =1,…,J ;k =1,…,K

 

by using transportation simplex method. Update *
ijky . 

Simplex multipliers *
ku  can be calculated by using the optimal tableau for the 

follower’s transportation problem and simplex multipliers *
ijv  can be obtained by using  

* *max{ ( (( , ), ) )}ij kv Cost i j k u= − + . 

Equilibrium solution is ( )* *,ij ijkx y  with simplex multipliers ( )* *, .k iju v
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5. Numerical example 

There are six production sites, six distribution centers and six customers. Capacities of 

production sites and distributions centers are given in the following vectors;  

a = ( 200 100 140 160 200 60 )T  

and 

b = ( 200 135 120 140 100 200 )T   

respectively. Customer demands are (80 60 200 90 200 100) .= Td   

Cost parameters are given in the following matrices; 

(400 500 480 520 560 440)= TPC , 

31.0 21.0 18.0 21.5 36.5 31.5
48.5 37.5 36.0 40.0 55.0 46.5
45.0 33.5 33.0 39.0 54.0 48.0
55.5 44.0 44.0 49.5 65.0 57.0
41.5 30.0 38.0 43.0 56.0 55.5
28.5 18.5 24.0 36.5 46.0 51.0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

c ,  

and  

43.0 52.5 62.0 60.5 50.0 54.5
32.5 43.5 54.0 56.0 48.0 55.0
30.0 40.0 50.0 49.0 39.0 45.0
23.0 33.0 43.0 43.5 35.0 41.5
12.0 22.5 34.0 38.0 33.0 41.0
23.0 33.0 44.5 51.5 48.0 56.5

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

e . 

Time parameters expressed in the same units are given in the following matrices; 

( )1 1 1 1 1 1 Tτ = , 
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2.5 1.5 5.0 2.0 5.0 5.5
4.0 4.0 1.5 4.5 1.0 3.5
3.0 1.0 4.5 2.5 3.5 3.5
3.5 4.5 1.0 4.5 3.0 3.0
1.5 2.0 4.5 1.5 3.5 3.5
2.5 3.5 3.0 3.0 1.0 0.5

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

t , and 

3.5 0.5 1.0 4.5 3.5 1.5
3.5 3.5 3.5 3.5 0.5 3.5
1.0 3.5 3.5 2.0 2.5 4.0
4.0 1.0 0.5 4.5 4.0 1.5
4.0 4.0 4.0 3.0 1.0 4.0
3.5 3.0 3.0 3.5 2.5 3.0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

T . 

Optimal values of leader’s variables are given in (Table 1). We use three type of 

distribution function, first uniform distribution, i.e., the lifetime of the product has uniform 

distribution on the interval [6,10] with mean 8 units of time, second piecewise-uniform 

distribution: 

0, 6
0.4( 6), 6 7
0.4 0.3( 7), 7 8

( )
0.7 0.2( 8), 8 9
0.9 0.1( 9), 9 10
1, 10

t
t t

t t
t

t t
t t

t

<⎧
⎪ − ≤ <⎪
⎪ + − ≤ <

Φ = ⎨
+ − ≤ <⎪

⎪ + − ≤ <
⎪

≤⎩

 

with mean 7.5 units of time, and, third exponential distribution with 0.125λ =  or mean 8 

units of time.  

Table 1. Optimal solutions for the leader’s problem on relaxed feasible region. 

 DC1 DC2 DC3 DC4 DC5 DC6 

P1 0 0 32.5 140 0 27.5 

P2 0 0 0 0 0 100 

P3 52.5 0 87.5 0 0 0 

P4 22.5 0 0 0 0 7.5 

P5 65 135 0 0 0 0 

P6 60 0 0 0 0 0 

In Step 2, probable total times on routes, distribution function values on those probable 

routes, and (( , ), )Cost i j k  values can be obtained easily by using a simple computer code. For 

piecewise-uniform distribution, a simple nonlinear optimization model is solved to obtain the 

multipliers: λijk
r ≥ 0, r =1,…,7  from the following equations: 
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7

1
1 2 3 4 5 6 7

3 4 5 6 7

1,

0 6 7 8 9 10 12 ,

( ) 0.4 0.7 0.9 1 1 .

r
ijk

r

ij j jk ijk ijk ijk ijk ijk ijk ijk

ij j jk ijk ijk ijk ijk ijk

t T

t T

λ

τ λ λ λ λ λ λ λ

τ λ λ λ λ λ

=

=

+ + = + + + + + +

Φ + + = + + + +

∑

 

Non-zero optimal solutions for respective distribution functions are given in (Table 2), 

(Table 3), and (Table 4).  

Table 2. Optimal solutions for the follower’s problem, uniform distribution. 

P1.DC3.C1 32.5 P1.DC4.C2 60 P1.DC4.C3 80 P1.DC6.C6 27.5 

P2.DC6.C5 100 P3.DC1.C3 52.5 P3.DC3.C1 47.5 P3.DC3.C4 40 

P4.DC1.C3 22.5 P4.DC6.C5 7.5 P5.DC1.C3 45 P5.DC1.C5 7.5 

P5.DC1.C6 12.5 P5.DC2.C4 50 P5.DC2.C5 85 P6.DC1.C6 60 

Table 3. Optimal solutions for the follower’s problem, piecewise-uniform distribution. 

P1.DC3.C4 32.5 P1.DC4.C2 60 P1.DC4.C3 80 P1.DC6.C4 7.5 

P1.DC6.C6 20 P2.DC6.C5 100 P3.DC1.C3 52.5 P3.DC3.C1 80 

P3.DC3.C4 7.5 P4.DC1.C3 22.5 P4.DC6.C5 7.5 P5.DC1.C3 45 

P5.DC1.C6 20 P5.DC2.C4 42.5 P5.DC2.C5 92.5 P6.DC1.C6 60 

Table 4. Optimal solutions for the follower’s problem, exponential distribution. 

P1.DC3.C1 32.5 P1.DC4.C3 140 P1.DC6.C1 7.5 P1.DC6.C6 20 

P2.DC6.C4 42.5 P2.DC6.C5 57.5 P3.DC1.C6 52.5 P3.DC3.C1 40 

P3.DC3.C4 47.5 P4.DC1.C6 22.5 P4.DC6.C5 7.5 P5.DC1.C2 60 

P5.DC1.C3 5 P5.DC2.C5 135 P6.DC1.C3 55 P6.DC1.C6 5 

Table 5. Simplex multipliers, uniform distribution. 

 C1 C2 C3 C4 C5 C6 

ku  -130 -223 -233 -294 -221 -225.5 

ijv  DC1 DC2 DC3 DC4 DC5 DC6 
P1 171 238 0 190 48 216 
P2 171 173 245 190 256 33 
P3 171 238 50 190 188 33 
P4 171 173 245 190 188 103 
P5 171 173 50 190 188 33 
P6 171 173 245 190 256 242,5 
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6. Conclusion 

This paper focuses on determining the Stackelberg solution of two-level hierarchical 

transportation problem considering perishable product characteristics. The proposed model is 

constructed using SMPEC concepts. The model is applicable when there is a hierarchically 

structured cold chain. We examine three kinds of distribution functions with close mean 

values. The results showed that equilibrium solution is very sensitive to shape of the 

distribution function shape. In the future study, stochastic demand (or other coefficients) case, 

indivisible product case (with integer programming), vehicle routing model, more echelons or 

any combinations of these four cases may be considered.  
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