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The paper deal with the Hamiltonian formalism of mechanical 

systems using on three-dimensional space which represent an 

interesting multidisciplinary field of research. In this study, the 

motion route of bodies in space mathematically will be modeled. 

We, as a result modeling obtained of partial differential 

equations, will be solved by symbolic computational program. 

Also, the geometrical-physical results related to on three-

dimensional space of mechanical systems.  
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1. Introduction 

There are lots of applications on differential geometry and mathematical physics that 

their are used in many areas. One of the most important applications of differential geometry 

is on geodesics. A geodesic is the shortest route between given two points. Geodesics can be 

found with the help of the Hamilton equations. We can say that differential geometry provides 

a suitable field for studying Hamiltonians of classical mechanics, analytic mechanics and field 

theory. The dynamic equations for moving bodies are obtained according to Hamiltonian 

mechanics formulation by many authors and are illustrated as follows. There have been many 

studies about Hamiltonian dynamics, mechanics, formalisms, systems and equations. There 

are real, complex, paracomplex and other analogues. As is known, it is possible to produce 

different analogous in different spaces. Now, we give some examples as follows: Liu showed 

that if a Hamiltonian function and the initial state of the atoms in the system are known, one 

can compute the instantaneous positions and momenta of the atoms at all successive times [1]. 

Bradley demonstrated that it is possible to write Hamiltonians as in Newton’s second rule 

amF   that lets you avoid having to deal with vector-valued force balances. They not only 
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make hideous mechanics problems simple, but they also expose deep symmetries and 

conserved properties. Rigid-body dynamics is the study of the movement of the objects like 

baseballs, planets, tops, and snowflakes through space. Gravitation concerns the intricacies of 

the n -body problem: n  masses pulling on one another in the standard 
2r

mM
G  way [2]. Ioffe 

explored that dynamic optimization problems for systems governed by differential inclusions 

are considered. The main focus is on the structure of and interrelations between necessary 

optimally conditions stated in terms of Hamiltonian formalisms [3]. Antoniou and Pronko 

suggested the Hamiltonian approach for fluid mechanics based on the dynamics formulated in 

terms of Lagrangian variables [4]. Antoniou and Pronko proposed a Hamiltonian approach to 

.uid mechanics based on the dynamics formulated in terms of Lagrangian variables. They also 

discussed the difference between the Eulerian and the Lagrangian descriptions, pointing out 

the incompleteness of the former. The constructed formalism was also applicable to an ideal 

plasma. They concluded with several remarks about quantizing the fluid [5]. The gravitational 

two-body problem in given was generalized by Barker and O’Connell [6]. Becker and 

Scherpen examined that a Lagrangian had been developed for leading the equations of motion 

which are isomorphic to the full Navier-Stokes equation, including dissipation [7]. Spotti 

investigated how Fano manifolds equipped with a Kähler-Einstein metric can degenerate as 

metric spaces (in the Gromov-Hausdorff topology) and some of the relations of this question 

with Algebraic Geometry [8]. Tekkoyun showed that paracomplex analogue of the Euler-

Lagrange equations was obtained in the framework of para-Kählerian manifold and the 

geometric results on a paracomplex mechanical systems were found [9]. Bi-paracomplex 

analogue of Lagrangian systems was shown on Lagrangian distributions by Tekkoyun and 

Sari [10]. Tekkoyun and Yayli presented generalized-quaternionic Kählerian analogue of 

Lagrangian and Hamiltonian mechanical systems. Eventually, the geometric-physical results 

related to generalized-quaternionic Kählerian mechanical systems are provided [11]. Kasap 

and Tekkoyun introduced Lagrangian and Hamiltonian formalism for mechanical systems 

using para/pseudo-Kähler manifolds, representing an interesting multidisciplinary field of 

research. Also, the geometrical, relativistical, mechanical and physical results related to 

para/pseudo-Kähler mechanical systems were given, too [12]. Kasap demonstrated Weyl-

Euler-Lagrange and Weyl-Hamilton equations on n

nR2  which is a model of tangent manifolds 

of constant W -Sectional curvature [13]. 

From the above, we show that some examples of the Hamiltonian is applied to model 

the problems include harmonic oscillator, charge Q  in electromagnetic fields, Kepler problem 

of the earth in orbit around the sun, rotating pendulum, molecular and fluid dynamics, LC  

networks, Atwood’s machine, symmetric top etc. In the present paper, we provide equations 

related to Hamiltonian mechanical systems on three-dimensional space. Also, we will be 

present on three-dimensional space, its results and solutions. 

 

2. Preliminaries 

In this study, all manifolds and geometric structures are supposed that differentiable. 

The Einstein summation convention )(  j

j

j

j xaxa  is in use. Also, TM  is tangent 

manifold, MT *  is cotangent manifold of a manifold M  and M  is an n -dimensional 
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differentiable manifold. Additionally, vector fields, the set of para-complex numbers, the set 

of para-complex functions on TM , the set of para-complex vector fields on TM and the set of 

para-complex 1-forms on TM  are represented by  YX , , A , )(TMF , )(TM  and )(1 TM , 

respectively. 

 

3. J -Holomorphic Curves 

A pseudoholomorphic curve (or J -holomorphic curve) is a smooth map from a 

Riemann surface into an almost complex manifold that satisfies the Cauchy-Riemann 

equation. Introduced in 1985 by Gromov, pseudoholomorphic curves have since 

revolutionized the study of symplectic manifolds. The theory of J -holomorphic curves is one 

of the new techniques which have recently revolutionized the study of symplectic geometry, 

making it possible to study the global structure of symplectic manifolds. The methods are also 

of interest in the study of Kähler manifolds, since often when one studies properties of 

holomorphic curves in such manifolds it is necessary to perturb the complex structure to be 

generic. The effect of this is to ensure that one is looking at persistent rather than accidental 

features of these curves. However, the perturbed structure may no longer be integrable, and so 

again one is led to the study of curves which are holomorphic with respect to some non-

integrable almost complex structure J . A complex-valued function f  of a complex variable 

z  is said to be holomorphic at a point a  if it is differentiable at every point within some open 

disk centered at a . Pseudosphere is negative curvature [14]. 

 

4. The Cauchy.Riemann Equation 

The Cauchy-Riemann differential equations in complex analysis consist of a system of 

two partial differential equations which must be satisfied if it is know that a complex function 

is complex differentiable. Moreover, the equations are necessary and sufficient conditions for 

complex differentiation once it seen that its real and imaginary parts are differentiable real 

functions of two variables. The Cauchy-Riemann equations on a pair of real-valued functions 

of two real variables ),( yxu  and ),( yxv  are the two equations: 

.,
y

u

x

v

y

v

x

u


















      (1) 

Typically u  and v  are taken to be the real and imaginary parts respectively of a complex-

valued function of a single complex variable yixz  , ),(),()( yxviyxuyixf  . 

 

5. Symplectic Geometry 

A symplectic manifold ),( M  is a smooth manifold )(M  equipped with a closed 

nondegenerate differential 2-form )(  called the symplectic form. The study of symplectic 

manifolds is called symplectic geometry or symplectic topology. Symplectic manifolds arise 

naturally in abstract formulations of classical mechanics and analytical mechanics as the 

cotangent bundles of manifolds, e.g., in the Hamiltonian formulation of classical mechanics, 

which provides one of the major motivations for the field. The set of all possible 
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configurations of a system is modelled as a manifold, and this manifold’s cotangent bundle 

describes the phase space of the system. The basic example of an almost complex symplectic 

manifold is standard Euclidean space ),R( 0

2 n  with its standard almost complex structure 0J  

obtained from the usual identification with nC . 

Thus, one sets 

jijj xixz 22          (2) 

for nj ,...,1  and defines 0J  by 

   
12202120 ,   jjjj JJ
   

 (3) 

where jj x /  is the standard basis of n

x RT 2  [14]. 

 

6. Almost (para)-Complex Structure and Manifolds 

Definition 1: Let M  be a smooth manifold of real dimension n2 . We say that a 

smooth atlas A  of M  is holomorphic if for any two coordinate charts mCUUz  ':  and 
mCVV  ':  in A , the coordinate transition map 1z  is holomorphic. Any 

holomorphic atlas uniquely determines a maximal holomorphic atlas, and a maximal 

holomorphic atlas is called a complex structure for M . We say that M  is a complex 

manifold of complex dimension n  if M  comes equipped with a holomorphic atlas. Any 

coordinate chart of the corresponding complex structure will be called a holomorphic 

coordinate chart of .M  A Riemann surface or complex curve is a complex manifold of 

complex dimension 1.  

Definition 2: Let M  be a differentiable manifold of dimension n2  and suppose J  is a 

differentiable vector bundle isomorphism TMTMJ :  such that MTMTJ xxx :  is a 

complex structure for MTx , i.e. IJ 2  where I  is the identity vector bundle isomorphism 

and JJJ 2 . Then J  is called an almost-complex structure for the differentiable manifold 

M . A manifold with a fixed almost-complex structure is called an almost-complex manifold. 

Definition 3: Let be V  a vector space over R . Recall that a paracomplex structure on 

V  is a linear operator J  on V  such that IJ 2 , and I  is the identity operator on V . A 

prototypical example of a paracomplex structure is given by the map VVJ : , where 
nn RRV  . An almost-paracomplex structure on M  a manifold is a differentiable map 

TMTMJ :  on the tangent bundle TM  of M  such that J  preserves each fiber. A 

manifold with a fixed almost paracomplex structure is called an almost paracomplex 

manifold. A celebrated theorem of Newlander and Nirenberg [15] says that an almost (para) 

complex structure is a (para) complex structure if and only if its Nijenhuis tensor or torsion 

vanishes. 
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Theorem 1: The almost (para)-complex structure J  on M  is integrable if and only if 

the tensor JN  vanishes identically, where JN  is defined on two vector fields X  and Y  by 

         .,,,,, YXYJXJJYXJJYJXYXNJ      (4) 

The tensor )1,2(  is called the Nijenhuis tensor (4). We say that J  is torsion free if 0JN . 

(Para)-Complex Nijenhuis tensor of an almost (para)-complex manifold ),( JM  is given by 

(4). It disappears if and only if J  is an integrable almost (para)-complex structure, i.e. given 

any point NP , there are local coordinates which are centered at P  so 

dzdxdxJ )(* , dzdydyJ )(* , dzdzJ )(* .    (5) 

The structure *J  is the dual form of the structure J . These structures holomorphic property 

are  

.)()()()(

,)()()()()(

,)()()()()(

****2*

*****2*

*****2*

dzdzJdzJdzJJdzJ

dydzdzdydzJdyJdzdyJdyJJdyJ

dxdzdzdxdzJdxJdzdxJdxJJdxJ













  (6) 

As can be seen from above IJ 2*  are paracomplex structures (6). The system are based on 

three variables and three-dimensional for ),,( zyx . In this study, above holomorpfic structures 

will be use. 

 

7. Hamiltonian System 

Definition 4: [16,17,18]: Let M  is the base manifold of dimension n  and its cotangent 

manifold MT * . By a symplectic form we mean a 2 form   on MT * . Let ),( * MT  be a 

symplectic manifold, there is a unique vector field HX on MT *  and RMTH *:  is called 

as Hamiltonian function. Where VTH   and T  is kinetic energy and V  is potential 

energy such that Hamiltonian dynamical equation is determined by 

dHi
HX  .       (7) 

We say HX  is locally Hamiltonian vector field.   is closed and also shows the canonical 

symplectic form so that  d , )(* J , *J  a dual of J ,   a 1 form on MT * . The 

triple ),,( *

HXMT   is named Hamiltonian system which is defined on the cotangent bundle 

MT * . From the local expression for HX  we see that ))(),(( tptq i

i  is an integral curve of HX  

if Hamilton’s equations is expressed as follows: 

.,
ii

i

i

q

H
p

p

H
q









        (8) 
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8. Hamilton Equations on Three-Dimensional Space 

Now, we will present Hamilton equations and Hamiltonian mechanical systems for 

quantum and classical mechanics constructed on three-dimensional space. Let ),( *JM  be on 

three-dimensional space. Suppose that the complex structures, a Liouville form and a 1 form 

on three-dimensional space are shown by ,*J  and   respectively. Consider a 1 form   

such that 

zdzxdyydx        (9) 

Then, we obtain the Liouville form as follows: 

zdzdzdyxdzdxyJ  )()()(*     (10) 

It is well known that if   is a closed on three-dimensional space, then   is also a symplectic 

structure on ),( *JM . Therefore the 2 form  d  indicates the canonical symplectic 

form and derived from the 1 form to find to mechanical equations. Then the 2 form   is 

calculated as below: 









































































































dzdz
z

z
dzdz

z

x
dydz

z

x
dzdz

z

y
dxdz

z

y

dzdy
y

z
dzdy

y

x
dydy

y

x
dzdy

y

y
dxdy

y

y

dzdx
x

z
dzdx

x

x
dydx

x

x
dzdx

x

y
dxdx

x

y

.   (11) 

Take a vector field HX  so that called to be Hamiltonian vector field associated with 

Hamiltonian energy H  and determined by 

.
z

Z
y

Y
x

XX H















    

  (12) 

)( HX  will be calculated using   and HX . So, 

  .)(2=-=)(
z

Z
y

Y
x

XdydzdxdzdxdydX H















 

 (13) 

Calculations use external product feature. These properties are  

.)()()(

,

fvggvfvgf

fggf




      (14) 

We have 
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






































































































































































dz
z

dydy
z

dzZdz
z

dxdx
z

dzZdy
z

dxdx
z

dyZ

dz
y

dydy
y

dzYdz
y

dxdx
y

dzYdy
y

dxdx
y

dyY

dz
x

dydy
x

dzXdz
x

dxdx
x

dzXdy
x

dxdx
x

dyX

Xi HX H

)()()()()()(.2

)()()()()()(.2

)()()()()()(.2

)(

 
              (15) 

Furthermore, the differential of Hamiltonian energy H  is obtained by 

.dz
z

H
dy

y

H
dx

x

H
dH














     (16) 

From dHi
HX   the Hamiltonian vector field is found as follows: 

dz
z

H
dy

y

H
dx

x

H














 Zdx - dz Y dx  2.Y  Xdz 2.Xdy 

      

(17) 

and 

y

H
X






2

1
, 

y

H

z

H
Y











2

1
, 

x

H

y

H

z

H
Z














 2

                   

(18) 

and then 

zx

H

y

H

z

H

yy

H

z

H

xy

H
X H

































































 2

2

1

2

1
          (19) 

Consider the curve and its velocity vector 

 

zdt

dz

ydt

dy

xdt

dx
t

tztytxtMRI


















)(

)(),(),()(,:






      (20) 

such that an integral curve of the Hamiltonian vector field HZ , i.e., 

  .,)( It
t

tX H 






        (21) 

Then, we find the following equations; 

.2.

2

1
.

2

1
.

x

H

y

H

z

H

dt

dz
III

y

H

z

H

dt

dy
II

y

H

dt

dx
I































      (22) 



Z. Kasap /BALKANJM 02 (2014) 141-149 

 

148 

Hence, the equations introduced in (22) are named Hamilton equations on three-dimensional 

space and then the triple ),( HXM  is said to be a Hamiltonian mechanical system on three-

dimensional space. 

 

9. Equations Solution 

These found (22) are partial differential equation depending on the time and there are on 

three-dimensional space. We can solve these equations using the symbolic computational 

program. The software codes of these equations, 

 

Equations Codes 

y),  t),z, y, (x,diff(H*0.5   t)diff(x(t), : dif1I. 1

y),  t),z, y, (x,diff(H*0.5  z)  t),z, y, (x,diff(H   t)diff(y(t), : dif2II. 22 

 x), t),z, y, (x,diff(H- y)  t),z, y, (x,diff(H  z)  t),z, y, (x,diff(H*2   t)diff(z(t), : dif3III. 333   

                             (23) 

For example at (23), we choose as special case of x(t) , y(t), z(t) and they solutions as 

follows: 

 

Closed Solutions of Equations 

,sin(t)+t:=for  x(t);t)z,(x,F+y*cos(t)*2-y*-2=t)z,y,(x,HI. 11

ln(t),:=y(t)for  ;           t)z,*1/2-y(x,F+z*1/t=t)z,y,(x,HII. 22

t².:=z(t)for  ;   t)x,*2+zx,+(yF+x*t*-2=t)z,y,(x,HIII. 33                                           (24) 

 

10. Conclusion 

In this study, the paths of Hamiltonian vector fields for HX  on three-dimensional space 

are the solutions Hamilton equations raised in (22) on three-dimensional space for mechanical 

systems. Also we found the closed solutions of partial differential equations (24) that they are 

the equations of motion of objects in space. Nowadays, well-known Hamiltonian models have 

emerged as a very important tool since they present a simple method to describe the model for 

mechanical systems. Furthermore, the metrics are interpreted as the gravitational potential, as 

in general relativity, and the corresponding forms are interpreted as the electromagnetic 

otentials.  

Furthermore, the equations found by (22) easily seen extremely useful in applications 

from Hamiltonian Mechanics, Quantum Physics, Optimal Control, Biology and Fluid 

Dynamics. For this reason, the found equations are only considered to be a first step to realize 

how a generalized on three-dimensional space geometry. 

They has been used in solving problems in different physical area. Our proposal for 

future research, the Hamiltonian mechanical equations derived on a generalized on three-

dimensional space are suggested to deal with problems in electrical, magnetical and 

gravitational fields of quantum and classical mechanics of physics [19,20,21]. 
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