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1. Introduction 

Mathematical physics and differential geometry has lots of different applications for our 

life that these applications are used in many areas. We can say that differential geometry 

provides a good working area for studying Lagrangians of classical mechanics and field 

theory. The dynamic equation for moving bodies is obtained for Lagrangian mechanics. There 

are many studies about Euler-Lagrangian dynamics, mechanics, formalisms, systems and 

equations. There are real, complex, paracomplex and other analogues for these studies. It is 

well-known that Euler-Lagrangian analogues are very important tools. They have a simple 

method to describe the model for mechanical systems. The models about mechanical systems 

are given as follows. Some examples of the Euler-Lagrangian is applied to model the 

problems include harmonic oscillator, charge Q  in electromagnetic fields, Kepler problem of 

the earth in orbit around the sun, pendullum, molecular and fluid dynamics, LC  networks, 

Atwood’s machine, symmetric top etc. Lets remember some work done. Kasap examined 

Weyl-Euler-Lagrange and Weyl-Hamilton equations on 
n

nR2
. Additionally, he was used a 

model of tangent manifolds of constant W sectional curvature [1]. Kapovich proved an 

existence theorem for flat conformal structures on finite-sheeted coverings over a wide class 

of Haken manifolds [2]. Schwartz considered asymptotically at Riemannian manifolds with 
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nonnegative scalar curvature [3]. Kulkarni explained some new examples of conformally flat 

manifolds, as a step toward a classification of such manifolds up to conformal equivalence 

[4]. Dotti and Miatello purposed the real cohomology ring of low dimensional compact flat 

manifolds endowed with one of these special structures [5]. Szczepanski gave a list of six 

dimensional at Kähler manifolds. Moreover, we present an example of eight dimensional at 

Kähler manifold M  with finite ))(( 1 MOut   group [6]. Ge, Wang and Wu showed that the 

mass of an asymptotically flat n-manifold is a geometric invariant [7]. Gonzalez look at 

complete, locally conformally flat (lcf) metrics defined on a domain 
nS  [8]. Akbulut and 

Kalafat constructed infinite families of non-simply connected locally conformally flat (LCF) 

4-manifolds realizing rich topological types [9]. 

 

2. Preliminaries 

In this study, all manifolds and geometric structures are supposed that differentiable. 

The Einstein summation convention )(  j

j

j

j xaxa  is in use. Also, TM  is tangent 

manifold, of a manifold M  and M  is an n -dimensional differentiable manifold. 

Additionally, vector fields, the set of paracomplex functions on TM , the set of paracomplex 

vector fields on TM  and the set of paracomplex 1 forms on TM  are represented by  YX , , 

)(MF , )(TM  and )(1 TM , respectively. 

 

3. J -Holomorphic Curves 

A pseudoholomorphic curve ( J holomorphic curve) is a smooth map from a Riemann 

surface into an almost complex manifold such that satisfies the Cauchy-Riemann equation. 

Introduced in 1985 by Gromov, pseudoholomorphic curves have since revolutionized the 

study of symplectic manifolds. The theory of J holomorphic curves is one of the new 

techniques which have recently revolutionized the study of symplectic geometry, making it 

possible to study the global structure of symplectic manifolds. The methods are also of 

interest in the study of Kähler manifolds, since often when one studies properties of 

holomorphic curves in such manifolds it is necessary to perturb the complex structure to be 

generic. The effect of this is to ensure that one is looking at persistent rather than accidental 

features of these curves. Nevertheless, the perturbed structure may no longer be integrable, 

and so again one is led to the study of curves which are holomorphic with respect to some 

non-integrable almost complex structure J . f  is a complex-valued function of a complex 

variable z  such that it said to be holomorphic at a point a  if it is differentiable at every point 

within some open disk centered at a . Also, pseudosphere is called negative curvature [10]. 

 

4. Almost (para)-Complex and Tangent Structure 

Definition 1: Let M  be a differentiable manifold of dimension n2  and suppose J  is a 

differentiable vector bundle isomorphism TMTMJ :  so that MTMTJ xxx :  is a 

complex structure for MTx , i.e. IJ 2
 where I  is the identity vector bundle isomorphism 

http://arxiv.org/find/math/1/au:+Ge_Y/0/1/0/all/0/1
http://arxiv.org/find/math/1/au:+Wang_G/0/1/0/all/0/1
http://arxiv.org/find/math/1/au:+Wu_J/0/1/0/all/0/1
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and JJJ 2
. Then J  is called an almost-complex structure for the differentiable manifold 

M . A manifold with a fixed almost-complex structure is called an almost-complex manifold. 

Definition 2: Let be V  a vector space over ℝ. Recall that a paracomplex structure on 

V  is a linear operator J  on V  such that IJ 2
, and I  is the identity operator on V . A 

prototypical example of a paracomplex structure is given by the map VVJ : , where 
nn RRV  . An almost-paracomplex structure on M  a manifold is a differentiable map 

TMTMJ :  on the tangent bundle TM  of M  such that J  preserves each fiber. A 

manifold with a fixed almost paracomplex structure is called an almost paracomplex 

manifold. 

Definition 3: Let be V  a vector space over ℝ. Recall that a tangent (exact) structure on 

V  is a linear operator J  on V such that 02 J , where JJJ 2
, and I  is the identity 

operator on V . A celebrated theorem of Newlander and Nirenberg [11] says that an almost 

(para) complex structure is a (para)complex structure if and only if its Nijenhuis tensor or 

torsion vanishes. 

Definition 4: Let suppose that X  is a vector field. A vector-valued function with 

cartesian coordinates  nXX ,...,1  and )(t  a parametric curve with cartesian coordinates 

 )(),...,(1 tt n . Then )(t  is an integral curve of X  if it is a solution of the following 

autonomous system of ordinary differential equations:  nX
dt

d



,...,11

1  ,…,

 nn
n X

dt

d



,...,1 . Such a system may be written as a single vector equation 

 
dt

d
ttX


  )(')( , and so the curve )(t  is tangent at each point to the vector field X .  

Theorem 1: J  is the almost complex structure on M such that it integrable if and only 

if the tensor JN  vanishes identically, where JN  is defined on two vector fields X  and Y  by 

         .,,,,, YXJYXJYJXJJYJXYXNJ      (1) 

The tensor (2,1) is called the Nijenhuis tensor (1). We say that J  is torsion free if 

0JN . Paracomplex Nijenhuis tensor of an almost (para)-complex manifold  JM ,  is given 

by (1). Let ),...,( 21 nxx  be a local coordinate system. The torsion tensor is bilinear, for if 

jx
X




  and 

kx
Y




  are vector fields and 

i

jJ  are the components of J , then by direct 

calculation the 
thi  component of the torsion tensor is given by 

 ,,
2

0

























 n

h

h

jk

i

h

h

kj

i

h

i

jh

h

k

i

kh

h

j

i

jk

i

kj

JJJJJJJJN
xx

N    (2) 

where h  denotes partial differentiation 
hx . It disappears if and only if J  is an integrable 

almost (para)-complex structure, i.e. given any point NP , there are local coordinates 

which are centered at P  so, 

http://en.wikipedia.org/wiki/Vector_field
http://en.wikipedia.org/wiki/Vector-valued_function
http://en.wikipedia.org/wiki/Cartesian_coordinate_system
http://en.wikipedia.org/wiki/Parametric_curve
http://en.wikipedia.org/wiki/Autonomous_system_(mathematics)
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The above structures (3) have been taken from [12]. These structures holomorphic 

property are as follows. 
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Similar to this process include the following. 
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As clear from the above IJ 2
 are complex structures. In this study, above 

holomorpfic structures will be used. 

 

5. Lagranian Dynamical Equation and System 

Definition 5: [13,14,15]: Let M  be an n dimensional manifold also TM  its tangent 

bundle with canonical projection TMTMM : . TM is called the phase space of velocities 

of the base manifold M . Let R: TML  be a differentiable function on TM  called the 

Lagrangian function . Where, VTL  , T  is kinetic energy and V  is potential energy. We 

consider the closed 2 form on TM  given by 

.LddJL            (6) 

Consider the equation 

.LLx dEi 
          

(7) 

Then X  is a vector field and xi  is reduction function that it is  Xi LLx  . We shall 

see that (7) under a certain condition on X  is the intrinsical expression of the Euler-Lagrange 

equations of motion. This equation is named as Lagrange dynamical equation. We shall see 

that for motion in a potential,  

LLVEL  )(           (8) 

 is an energy function and JXV   a Liouville vector field. Here LdE  denotes the differential 

of LE . The triple  XTM L ,,  is known as Euler-Lagrangian system on the tangent bundle 
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TM . If it is continued the operations on (7) for any coordinate system  )(),( tptq i

i , infinite 

dimension Lagrange's equation is obtained the form below: 

.,...,1,,0 niq
t

q

q

L

q

L

dt

d i
i

ii

























          (9) 

 

6. Holonomy, Riemannian and Flat Manifolds 

The holonomy of a connection on a smooth manifold is a general geometrical 

consequence of the curvature of the connection measuring the extent to that parallel transport 

around closed loops fails to preserve the geometrical data being transported. For flat 

connections, the associated holonomy is a type of monodromy, and is an naturally global 

notion. For curved connections, holonomy has nontrivial local and global features. A 

(smooth) Riemannian manifold or (smooth) Riemannian space ),( gM  is a real smooth 

manifold M  equipped with an inner product g  on the tangent space MTp  at each point p  

that varies smoothly from point to point in the sense that if X  and Y  are vector fields on M , 

then  )(),( pYpXgp p  is a smooth function. A Riemannian manifold is said to be flat if 

its curvature is everywhere zero. Intuitively, a flat manifold is one that locally looks like 

Euclidean space in terms of distances and angles, e.g. the interior angles of a triangle add up 

to 180°. 

 

7. Lagrangian Equations on Flat Manifolds 

Now, we get Euler-Lagrange equations for quantum and classical mechanics on Flat 

manifolds. Firstly, let X  be the vector field decided by 
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The above equation by adding L  (Lagrange function) impact has LdJ
. LddJL   

has the LdJ
 with the differential.  
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Energy function and its differential are like the following: 
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If we use (7) we obtain the equations given by 
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simplified version 
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          (21) 

so that these equations (21) are called Euler–Lagrange equations constructed on Flat 

manifolds. Thus the triple  XTM L ,, is named as a Euler–Lagrange mechanical system on 

Flat manifolds. 
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8. Equations Closed Solution 

These partial differential equations (21) are depending on time. We can solve these 

equations using the symbolic computational program. The software codes and solutions of 

these equations as follows: 

 

(1)  >PDEL1:=-cos(x3)*diff(diff(L1(x1,x2,x3,y1,y2,y3,t),y1),t)-    

   sin(x3)*diff(diff(L1(x1,x2,x3,y1,y2,y3,t),y2),t)+diff(L1(x1,x2,x3,y1,y2,y3,t),x1); 

 >answer:=pdsolve(PDEL1); 

 >answer:=(L1(x1,x2,x3,y1,y2,y3,t)=F1(x1)*F4(y1)*F5(y2)*F7(t)*F9(x3)*F8(x2,y3), 

  where;{-c3*F8(x2,y3)=0,F9(x3)=c3/(cos(x3)*c4*c7+sin(x3)*c5*c7-c1),    

  diff(F1(x1),x1)=c1*F1(x1),diff(F4(y1),y1)=c4*F4(y1),diff(F5(y2),y2)=c5*F5(y2),  

  diff(F7(t),t)=c7*F7(t)}. 

 

(2)  >PDEL2:=sin(x3)*diff(diff(L2(x1,x2,x3,y1,y2,y3,t),y1),t)-   

   cos(x3)*diff(diff(L2(x1,x2,x3,y1,y2,y3,t),y2),t)+diff(L2(x1,x2,x3,y1,y2,y3,t),x2); 

 >answer:=pdsolve(PDEL2); 

 >answer:=(L2(x1,x2,x3,y1,y2,y3,t)=F2(x2)*F4(y1)*F5(y2)*F7(t)*F9(x3)*F8(x1,y3), 

   where;{-c3*F8(x1,y3)=0,F9(x3)=c3/(-sin(x3)*c4*c7+cos(x3)*c5*c7-c2),   

   diff(F2(x2),x2)=c2*F2(x2),diff(F4(y1),y1)=c4*F4(y1),diff(F5(y2),y2)=c5*F5(y2),  

   diff(F7(t),t)=c7*F7(t)}. 

 

(3)  >PDEL3:=-diff(diff(L3(x1,x2,x3,y1,y2,y3,t),y3),t)+diff(L3(x1,x2,x3,y1,y2,y3,t),x3); 

 >answer:=pdsolve(PDEL3); 

 >answer:=(L3(x1,x2,x3,y1,y2,y3,t)=F3(x3)*F6(y3)*F7(t)*F8(x1,x2,y1,y2), 

   where;{F8(x1,x2,y1,y2)*c7=0, diff(F3(x3),x3)=c3*F3(x3), diff(F6(y3),y3)=c6*F6(y3),    

   diff(F7(t),t)=c3*F7(t)/c6-c7/c6}. 

 

(4)  >PDEL4:=cos(x3)*diff(diff(L4(x1,x2,x3,y1,y2,y3,t),x1),t)-  

   sin(x3)*diff(diff(L4(x1,x2,x3,y1,y2,y3,t),x2),t)+diff(L4(x1,x2,x3,y1,y2,y3,t),y1); 

 >answer:=pdsolve(PDEL4); 

 >answer:=(L4(x1,x2,x3,y1,y2,y3,t)=F1(x1)*F2(x2)*F4(y1)*F7(t)*F8(y2,y3), 

   where;{-c3*F8(y2,y3)=0, F9(x3)=c3/(cos(x3)*c1*c7-sin(x3)*c2*c7+c4),  

   diff(F1(x1),x1)=c1*F1(x1), diff(F2(x2),x2)=c2*F2(x2), diff(F4(y1),y1)=c4*F4(y1),  

   diff(F7(t),t)=c7*F7(t)}. 

 

(5)  >PDEL5:=sin(x3)*diff(diff(L5(x1,x2,x3,y1,y2,y3,t),x1),t)+  

   cos(x3)*diff(diff(L5(x1,x2,x3,y1,y2,y3,t),x2),t)+diff(L5(x1,x2,x3,y1,y2,y3,t),y2); 

 >answer:=pdsolve(PDEL5); 

 >answer:=(L5(x1,x2,x3,y1,y2,y3,t)=F1(x1)*F2(x2)*F5(y2)*F7(t)*F9(x3)*F8(y1,y3), 

   where;{-c3*F8(y1,y3)=0, F9(x3)=c3/(sin(x3)*c1*c7+cos(x3)*c2*c7+c2),  

   diff(F1(x1),x1)=c1*F1(x1), diff(F2(x2),x2)=c2*F2(x2), diff(F5(y2),y2)=c5*F5(y2),  

   diff(F7(t),t)=c7*F7(t)}. 

 

(6)  >PDEL6:=diff(diff(L6(x1,x2,x3,y1,y2,y3,t),x3),t)+diff(L6(x1,x2,x3,y1,y2,y3,t),y3); 

 >answer:=pdsolve(PDEL6); 

 >answer:=(L6(x1,x2,x3,y1,y2,y3,t)=F3(x3)*F6(y3)*F7(t)*F8(x1,x2,y1,y2), 

   where;{F8(x1,x2,y1,y2)*c7=0, diff(F3(x3),x3)=c3*F3(x3), diff(F6(y3),y3)=c6*F6(y3),  

   diff(F7(t),t)=(c7-F7(t)*c6)/c3}. 
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            (22) 

 

9. Discussion 

It is well known that classical field theory utilizes traditionally the language of 

Lagrangian dynamics such that this theory was extended to time-dependent classical 

mechanics. A Lagrange space has been certified as an excellent model for some important 

problems in relativity, gauge theory, and electromagnetism such that it gives a model for both 

the gravitational and electromagnetic field in a very natural blending of the geometrical 

structures of the space with the characteristic properties of these physical fields. 

Euler-Lagrangian dynamics is used as a model for field theory, quantum physics, 

optimal control, biology and fluid dynamics. Most important advantage of flat manifold is to 

allow the calculation of linear distance. The obtained equations (21) on Flat manifolds are 

very important to explain the rotational spatial mechanical-physical problems. In addition in 

the equations, using the symbolic computational program, closed solutions (22) were found. 

They has been used in solving problems in different physical and mechanical area and easily 

seen extremely useful in applications. 

For future research, Euler–Lagrange equations constructed on Flat manifolds are 

suggested to deal with problems in electrical, magnetical and gravitational fields of quantum 

and classical mechanics of physics [16,17,18]. 
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