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A problem for electromagnetic fields is considered by a direct 
analytical time-domain method called Evolutionary Approach to 
Electromagnetics (EAE). The problem is solved analytically in 
compliance with a causality principle. The method for time-
domain modes has brought a breath of fresh. EAE method is most 
useful and available one by means of t∂  time derivative. The 
method was developed at the end of 80s by O.A. Tretyakov.  
This study is distinguished a few studies via the method in the 
last decades. The studies are demonstrated for time-domain 
waveguide modes. 
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1. Introduction 

Time-harmonic waveguide modes are usually interpreted for signal transmission along 

waveguides. However, this model has two essential physical drawbacks. Firstly, the time-

harmonic signals are non-casual. It means that their propagation starts at time −∞=t  and 

continues up to time ∞=t . Secondly, these signals have frequency bandwidth equal to zero. 

Therefore this is not a satisfactory model for the signal transmission problems in the 

waveguides. Leaving aside the works based on the synthesizing realistic signals via continual 

superposition of the time-harmonic waves with using Fourier transform or Laplace transform, 

it seems that one of the first noticeable approaches for direct time domain solutions of 

electromagnetic problems was developed within the framework of four-dimensional 

relativistic formalism in electrodynamics [1]. 
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Then another alternative approach called the Evolutionary Approach to 

Electromagnetics (EAE) suggested in 80s was proposed for the direct time-domain theory of 

the cavity and waveguide modes. Important published works regarded to the EAE method for 

the time-domain waveguide problems were given in the literature [2]-[8]. The other set of 

important publications on this topic is based on the different techniques [9]-[13]. Knowledge 

about the properties of hyperbolic kind Partial Differential Equation (PDE) suggests 

alternative attacks to new classes of the waveguide problems. The proposed approach leads to 

PDEs for the modal amplitudes in the time-domain [1]. 

EAE method proposes analytical solution. Maxwell’s equation system is solved 

analytically in time-domain via evolution equations that have been kept t∂  and Laplacian. 

Electromagnetic fields are resolved from Maxwell’s equation system in time-domain. The 

solution is obtained by investigating along waveguide. 

2. Formulation of problem 

A hollow (i.e., medium-free) waveguide with its cross-section domain S bounded by a 

closed singly connected contour L is considered. It is supposed that L has enough smooth 

shape which implies that none of possible inner angles of L (i.e., being measured within S) 

exceeds π  and the cross section S maintains its form and size along the waveguide axis Oz 

[1]. 

Our aim is to solve the modal fields for the TE and TM modes which are a particular 

solution to the system of Maxwell’s equations with the time derivative given as 

0 0( , ) ( , )   ,   ( , ) ( , )t t t t
t t

µ ε
∂ ∂

∇× = − ∇× =
∂ ∂

E R H R H R E R        (1) 

where ( , )tE R  and ( , )tH R  are the electric and magnetic fields, respectively. 0ε  and 0µ  are 

dielectric and magnetic constants for free-space, respectively. Because the fields will be 

excited by an initial condition technique, the source term is not considered in the Maxwell’s 

equations. The vector R  within the waveguide volume denotes an observation point. t is 

observation time. Let’s introduce a right-handed triplet of the mutually orthogonal unit 

vectors (z, l, n)  where × =z l n . The unit vector z  and l  are tangential to the axis Oz and 

contour L, respectively. The unit vector n  is outward normal to the cross-section of domain S. 

Let’s decompose the vector R  and Nabla operator ∇  onto their transverse and 

longitudinal parts as 
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zz ∂+∇=∇+= ⊥ zzrR ,            (2) 

where the projection r  is a position vector within the domain S and ⊥∇  is the transverse 

Laplacian operator [1]. 

Subject of our study is real-valued electromagnetic fields specified by the electric and 

magnetic field strength vectors ( ),m tE R  and ( ),m tH R , respectively. Separate these vectors 

onto their transverse and longitudinal parts similarly to performed in Eq. (2), i.e., 

( ), ( , , ) ( , , )

( , ) ( , , ) ( , , )

m z

m z

t z t E z t

t z t H z t

= +

= +

E R E r z r

H R H r z r
          (3) 

where 1,2,...m = . Because the waveguide surface is supposed to have physical properties of 

the perfect electric conductor, the following boundary conditions hold over the waveguide 

surface [1] 

( , ) 0   ,    ( , ) 0   ,    ( , ) 0m m mL L L
t t t⋅ = ⋅ = ⋅ =n H R l E R z E R       (4) 

2.1. Neumann and Dirichlet boundary eigenvalue problem 

Let’s consider the Neumann boundary eigenvalue problem for TE time-domain modes 

for the operator 2
⊥∇  as 

( )
2 22 2 ( )( ) 0   ,   0   ,   ( ) 1 m m

m m m
L S

ds N
n S

ψ υ
υ ψ ψ⊥

∂
∇ + = = =

∂ ∫
rr r       (5) 

where ⊥∇⋅=∂ nn  is the normal derivative on the contour L. 2 0mυ >  and 1,2,3,..m =  are the 

eigenvalues and their regulation numbers of position on a real axis in the increasing order of 

their numerical values. The potentials ( )mψ r  are the eigenvectors of the corresponding 

eigenvalues. Force dimension N (i.e., newton) in Eq. (5) is involved in order to provide the 

required physical dimensions for the field vector components of mE  and mH  as 1−Vm  and 

1−Am , respectively [1], [8]. 

For eigenvalue 02
0 =υ , the problem (5) will have the following form 

2 0
0

( )( ) 0   ,   0
Ln

ψ
ψ⊥

∂
∇ = =

∂

rr           (6) 
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where the function 0 ( )ψ r  is a harmonic function and its value is distinct from zero. The 

minimum-maximum theorem for the harmonic functions yields that 0 ( ) Cψ =r  where 

SLr +∈  and C is an arbitrary constant [1]. 

Every particular solution ( )mψ r  to the Neumann problem (5) generates the TE time-

domain modal fields with the components as 

1
1 2

0

1
1 2

0

1
1 2

0

0

( , ) ( )

( , ) ( )

( , ) ( )

m

m

h
zm

h TE
m m ct m m m

h TE
m m z m m m

h TE
m zm m m m m

h z t A

h z t A

h z t A

υ

υ

υ ε ψ

υ µ ψ

υ µ υ ψ

−−
⊥

−−
⊥

−−

=

⎡ ⎤
= −∂ ∇ ×⎢ ⎥

⎣ ⎦

⎡ ⎤
= ∂ ∇⎢ ⎥

⎣ ⎦

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

E

E r z

H r

H r

        (7) 

where (1 / ) / ,  (1 / ) /
m mct m z mc t zυ υυ υ∂ = ∂ ∂ ∂ = ∂ ∂  and 0 01 /c ε µ= . Specially, the potential 

0 ( )ψ r  generates a one-component modal field as 

( ) ( )0 0, , 0   ,   , ,z t z t C= =E r H r z           (8) 

where dimension 1−Am  should be assigned to constant C [1], [8]. 

The potential ( , )mh z t  in Eq. (7) is governed by Klein-Gordon Equation (KGE) 

( )2 2 1 ( , ) 0
m mct z mh z tυ υ∂ −∂ + =            (9) 

which is known as a generalized wave equation [1], [5], [8]. 

As similar to the problem of the TE time-domain modes, the Dirichlet boundary 

eigenvalue problem for TM time-domain modes for the operator 2
⊥∇  can be stated as follows 

( )
2 22 2 ( ) 0   ,   ( ) 0   ,   ( ) 1 m

m m m mL
S

ds N
S
κ

κ φ φ φ⊥∇ + = = =∫r r r     (10) 

where ,..3,2,1,02 => mmκ  are the eigenvalues. The potential ( )0φ r  will be zero [1]. 

The solution ( )mφ r  to the Dirichlet problem (10) generates the TM time-domain modal 

fields with the following components 
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1
1 2

0

1
1 2

0

1
1 2

0

0

( , ) ( )

( , ) ( )

( , ) ( )

m

m

e
zm

e TM
m m ct m m m m

e TM
m m z m m m m

e TM
m zm m m m m

e z t A

e z t A

e z t A

κ

κ

κ µ κ φ

κ ε κ φ

κ ε κ φ

−−
⊥

−−
⊥

−−

=

⎡ ⎤
= −∂ × ∇⎢ ⎥

⎣ ⎦

⎡ ⎤
= ∂ ∇⎢ ⎥

⎣ ⎦

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

H

H z r

E r

E r

      (11) 

where (1 / ) / ,  (1 / ) /
m mct m z mc t zκ κκ κ∂ = ∂ ∂ ∂ = ∂ ∂ . The potential ( , )me z t  generates the modal 

amplitudes in Eq. (11) is the solution of the KGE as 

( )2 2 1 ( , ) 0
m mct z me z tκ κ∂ −∂ + =          (12) 

which is similar to Eq. (9) [1], [5]. 

The factors selected by the square brackets [.] in Eq. (7) and (11) describe the modal 

field patterns in the waveguide cross section. Their physical dimensions are 1−Vm  and 1−Am  

for the electric and magnetic field components, respectively. The factors selected by the 

broken brackets .  in Eq. (7) and (11) are dimensionless. Their physical sense is about the 

time-dependent modal amplitudes of appropriate modal field components [1], [8]. 

The set of the TE and TM modes (as the vector functions of transverse coordinates) is 

complete due to the completeness of their generating potentials in the same energetic space. 

The completeness comes from Sturm-Liouville and Weyl theorem in functional analysis 

about the orthogonal detachments of Hilbert space ( )SL2  [3]-[5]. This energetic space can be 

specified by an inner product as 

( ) ( ) ∞<+= ∫ ds
S

XX
S 21021021 ..1, HHEE µε        (13) 

where ( ) ,..2,1,, == icolX iii HE , col. stands for ”column”. One can verify that ( ) 0, =TM
n

TE
m XX  

for any combinations of m and n with the values ,...2,1,0 , independently. Therefore, any pair 

of the TE and TM time-domain modes is orthogonal in the sense of inner product (13) [1]. 
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3. Modal amplitude problem 

The KGE in Eq. (9) for the TE modes and the KGE in Eq. (12) for the TM modes have 

the same structure. After introducing the scaled time τ  and scaled coordinate ξ  as 

   ,       modes

   ,       modes,

m m

m m

ct z for TE

ct z for TM

τ υ ξ υ

τ κ ξ κ

= = −

= = −

       (14) 

the KGE in Eq. (9) and Eq. (12) can be written in the general form of 

( )2 2 1 ( , ) 0fτ ξ ξ τ∂ −∂ + =          (15) 

where ( , )f ξ τ  is either ( , )mh ξ τ  provided that zmκξ =  and ctmκτ =  or ( , )me ξ τ  provided 

that zmυξ =  and ctmυτ =  [1]. 

The KGE maintains its form under an action of a Poincare group within the framework 

of the group theory. In this aspect, Miller established eleven so called orbits of symmetry in 

terms of the group theory [14]. His results are crucial for development of the electromagnetic 

field theory in the time-domain [1]. 

On the basing of Miller’s idea, let us interpret solution to the KGE in Eq. (15) as a 

function with a new arguments, namely: [ ]( , ) ( , ), ( , )f f f u vξ τ ξ τ ξ τ≡ = . The “new” 

variables ( , )u v  are unknown yet, but suppose that they are twice differentiable functions of 

the “old” variables ( , )ξ τ . Substitution of [ ]( , ), ( , )f u vξ τ ξ τ  as a formal solution to Eq. (15) 

yields a new form of this equation as 

2 22 22 2 2 2

2 2 2 2

2 2 2

2 2           2 0

u u f v v f u u f
u v u

v v f u v u v f f
v u v

τ ξ τ ξ τ ξ

τ ξ τ τ ξ ξ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− + − + −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ − + − + =⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎣ ⎦

   (16) 

where notice that the derivatives u∂  and v∂  act on the function ( , )f u v  under study. The 

various combinations of the derivatives by ξ  and τ  of the functions ( , )u ξ τ  and ( , )v ξ τ  are 

appeared (unknown yet!) at the coefficients placed in square brackets. In order to solve Eq. 

(16), it is necessary to perform the following operations: a) Define the proper functions of u  

and v . b) Express the coefficients (placed in square brackets) as the functions of u and v. 
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After this step, Eq. (16) becomes a PDE with variable coefficients depending on u and 

v. c) Solve Eq. (16) via separation of the variables u and v. This can be done if and only if the 

functions of u  and v  are specified properly. For this aim, Miller obtained eleven pairs of 

inverse functions, i.e., ( , )u vξ  and ( , )u vτ  [14]. As an example, the first pair is v=ξ  and 

u=τ  where ∞<<∞− u , ∞<<∞− v . In this case, ( , )f u v  will be a product of the 

exponential functions and yields the time-harmonic waves [1]. 

In [1], is discussed case 2 ( vu cosh=τ  and vusinh=ξ  with ∞<≤∞− u , −∞ < v <∞)

from Millers’ list. The discussion is underlined electromagnetic fields, energy and surplus of 

energy. The study says  

( )2
2 2( , )f J

α

α α

τ ξ
ξ τ τ ξ

τ ξ
⎛ ⎞−

= −⎜ ⎟+⎝ ⎠
        (17) 

where the free parameter 0>α . If α  is integer, ( )2 2Jα τ ξ−  is cylindrical Bessel function. 

If α  is semi-integer ( )2 2Jα τ ξ−  is spherical Bessel function. 

Physically, Eq. (22) is the time dependent modal amplitude of the longitudinal field 

component and corresponds to ( , )mh z t in Eq. (7) or ( , )me z t in Eq. (11) [1]. 

The analysis of the modal amplitudes of the TE and TM fields can be executed in 

parallel according to Eq. (7) and Eq. (11). The amplitudes of the transverse field components 

are presentable by the same formulas, namely [5], [8]  

( , ) ( , )

( , ) ( , )

m m

m m

ct m ct m

z m z m

A f h e

B f h e

α υ κ

α υ κ

ξ τ ξ τ
τ

ξ τ ξ τ
ξ

∂
= − ≡ −∂ ≡ −∂

∂

∂
= ≡ ∂ ≡ ∂
∂

      (18) 

The modal amplitudes of the longitudinal components in Eq. (7) and (11) both are the 

solutions to the KGE (15). Then, the modal amplitudes of the transverse field components 

can be specified by Eq. (18). The direct differentiations of ( )τξα ,f  in accordance with these 

formulas result in 
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A0 (ξ ,τ ) = τ
J1 τ 2 −ξ 2( )

τ 2 −ξ 2
    ,    B0 (ξ ,τ ) = ξ

J1 τ 2 −ξ 2( )
τ 2 −ξ 2

Aα (ξ ,τ ) = − ∂
∂τ
fα = −

fα−1 − fα+1

2

#

$
%

&

'
(    ,   Bα (ξ ,τ ) = ∂

∂ξ
fα = −

fα−1 + fα+1

2

#

$
%

&

'
(

     (19) 

where the free parameter 0>α . 

In [8], is discussed case 5 ( ( )vu +=+ 2ξτ  and ( )2vu −=−ξτ  with u<∞− , ∞<v ) 

from Millers’ list. The study says, modal amplitudes are found out explicitly and expressed 

via products of Airy functions with arguments dependent on t and z.  

2
u v τ ξ+
+ =  and u v τ ξ− = ± − .        (20) 

When we read the double sign ( )± as minus ( )− , then 

4 2
u τ ξτ ξ −+
= −  and 

4 2
v τ ξτ ξ −+
= + .       (21) 

Calculations of the coefficients standing in the square brackets in (16) result in 

2 2 2 2 1[( ) ( ) ] [( ) ( ) ]
4( )

u u v v
u vτ ξ τ ξ∂ − ∂ = − ∂ − ∂ =
−

.      (22) 

with simple calculation 

2 2

2 2

( , ) ( , )4 ( , ) 4 ( , )f u v f u vuf u v vf u v
u v

∂ ∂
+ = +

∂ ∂
.       (23) 

And with separation of variables ( , ) ( ) ( )f u v U u V v= , 

2 2

2 2

1 ( ) 14 ( ) 4 4
( ) ( )
d U u du V v v

U u du V v dv
α+ = + =       (24) 

At this point, it is convenient to slightly change notation for the variables u and v. [8] 

introduces the new u and v as 

3 4( )u uα= −  and 3 4( )v vα= − .        (25) 

where α  is a constant. 
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The final solution to KGE could be presented 

( , ) ( ) ( ), 0f U u V vξ τ ξ τ= ≤ ≤ .        (26) 

3.1. Initial condition for Klein-Gordon equation 

The KGE (15) has to be supplemented with a pair of initial conditions. Physically, they 

specify the source signal for excitation. Suppose that such source is turned on at 0=t , 

however it does not act before. Then the initial conditions at 00 =⇒= zξ  can be written as 

0
0

( ) , 0  0 ( ) ,  0  0( , )   ,    ( , ) .
0  , 0  0 0  , 0  0

t tf f
t tξ

ξ

φ τ τ φ τ τ
ξ τ ξ τ

τ τ τ=
=

≥ ⇒ ≥ ⎧ ⎫⎧ ⎫ ≥ ⇒ ≥∂
= =⎨ ⎬ ⎨ ⎬

< ⇒ < ∂ < ⇒ <⎩ ⎭ ⎩ ⎭

)
 (27) 

3. 2. The causality principle 

The solution of the KGE have to be subjected for the physical requirements of the 

causality principle which can be interpreted in two ways: First, a weak causality condition 

states that all fields are zero before their sources are not turned on. In our case, this 

corresponds to 0<τ  which relates to the initial condition. Second, a strong causality 

condition from the Einstein postulates that the electromagnetic field can not transfer energy 

more than the speed of the light c  in the vacuum. In our case, this implies that the solution of 

the KGE should be zero beyond the distance τξ =  (i.e., ctz = ) which corresponds to the 

wave front of the electromagnetic wave. Thus, the solution of the KGE can be read physically 

as: 

( , ) 0   ,   0
( , ) ( , ) 0   ,  0 .

( , ) 0   ,   

f
f f

f

ξ τ τ

ξ τ ξ τ ξ τ

ξ τ ξ τ

= <⎧ ⎫
⎪ ⎪

= ≠ ≤ ≤⎨ ⎬
⎪ ⎪= >⎩ ⎭

        (28) 

Eq. (17) and (26) are must obey eq. (27) and (28). 

4. Conclusion  

In this study, the time-domain waveguide modes are reminded analytically by a method 

of Evolutionary Approach to Electromagnetics (EAE). Especially, [1] for case 2 and [8] for 

case 5 are reconsidered. A time-dependent source function is thought overed in a waveguide 

with perfect electric conductor surface. In the future, the other possible solutions proposed 

from the Miller’s eleven cases will be considered for the solution of different waveguide 

mode problems. 
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Appendix 

Complete list of substitutions ( )vu,ξ  and ( )vu,τ  factorizing solution to Eq. (16) as 

( ) ( ) ( )vVuUvuf =, . 

1) u=τ  and v=ξ , where ∞<<∞− u , ∞<<∞− v  yield ( )vuf ,  as a product of the exponential 
functions. 

2) vu cosh=τ  and vusinh=ξ  with ∞<≤∞− u , ∞<<∞− v  yield a product of an exponential 
and Bessel functions. 

3) ( ) 2/22 vu +=τ  and uv=ξ  with ∞<≤∞− u , −∞ < v <∞  yield ( )vuf ,  as a product of 
parabolic cylinder functions. 

4) uv=τ  and ( ) 2/22 vu +=ξ  with −∞ < v <∞ , −∞ < v <∞  yield ( )vuf ,  as a product of 
parabolic cylinder functions. 

5) ( )vu +=+ 2ξτ  and ( )2vu −=−ξτ  with u<∞− , ∞<v  yield a product of Airy functions. 

6) ( )[ ]2/cosh vu −=+ξτ  and ( )[ ]2/sinh vu +=−ξτ  with u<∞− , ∞<v  yield a product of 
Mathieu functions. 

7) ( )vu −=+ sinh2ξτ  and ( )vu −=− expξτ  with u<∞− , ∞<v  yield a product of Bessel 
functions. 

8) ( )vu −=+ cosh2ξτ  and ( )vu +=− expξτ  with u<∞− , ∞<v  yield a product of Bessel 
functions. 

9) vu coshsinh=τ  and vusinhcosh=ξ  with u<∞− , ∞<v  yield a product of Mathieu 
functions. 

10) vu coshcosh=τ  and vusinhsinh=ξ  ∞<<∞− u , ∞<≤∞− v  yield a product of Mathieu 
functions. 

11) vu coscos=τ  and vusinsin=ξ  π20 << u , π<≤ v0  yield a product of Mathieu functions. 

The substitutions 1) - 11) specify some orthogonal systems of coordinates ( )vu, . Besides, there 

are some non-orthogonal systems which enable to separate the variables u and v as well in the KGE: 

see paper [14]. 
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