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The purpose of this paper are to generalize the timelike parallel 

ip -equidistant ruled surfaces with a timelike base curve given 

in Minkowski 3-space 
3

1R ,to generalize n-dimensional 

Minkowski space 
n
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related with curvatures of the (m+1)-dimensional timelike 

parallel ip -equidistant ruled surfaces with a timelike base curve 

in the Minkowski space 
n
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1. Introduction 

Firstly, I.E. Valeontis [9], had defined parallel p-equidistant ruled surfaces in  and had 

given some results related with striction curves of these surfaces. Then (m+1)-dimensional 

ruled surfaces have been studied in n-dimensional Euclidean Space and in Minkowski Space, 

[1,3,4,7,8]. 

The purpose of this paper are to generalize the timelike parallel -equidistant ruled 

surfaces with a timelike base curve given in Minkowski 3-space , [5], to n-dimensional 

Minkowski space and to present some characteristic results related with curvatures of the 

(m+1)-dimensional timelike parallel -equidistant ruled surfaces with a timelike base curve in 

the Minkowski space are obtained. 

Throughout this paper, we shall assume that all manifolds, maps, vector fields, etc... are 

differentiable of class C
. First of all, we give some properties of a general submanifold M in 
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Rn
1

, [6]. Suppose that D  is the Levi-Civita connection of Rn
1

, while D is the Levi-Civita 

connection of M. If X and Y are vector fields of M and if V is the second fundamental tensor 

of M, then by decomposing D YX  into a tangent and normal components we find  

 

                                                       Y)V(X,YDYD XX  .                                                 (1) 

 

which is called Gauss Equation.  

 

If  is a normal vector field on M, we find the Weingarten equation by decomposing 

 DX  in a tangent and a normal component as  

 

                                                    

  D)X(A D XX .                                                      (2) 

 

Here A  represents a self-adjoint linear map at each point and D  represents a metric 

connection in the normal bundle )M( . We use the same notation A  for the linear map and 

the matrix of the linear map, [2]. If X and Y are vector fields of )M(  and the metric tensor 

of Rn
1

 is denoted by ,  we have  

Y,XA),Y,X(V,YDX       (3) 

If  mn21 ,...,,   constitutes an orthonormal base of the normal bundle )M( , we get 







mn

1j

jj )Y,X(V)Y,X(V .      (4) 

Let M be an m-dimensional semi-Riemannian manifold in Rn
1

 and A  be a linear map. 

If  )M(  is a normal unit vector at the point MP , then  

( , ) detG P A          (5) 

is called the Lipschitz-Killing curvature of M at P in the direction  .  

The mean curvature vector H of M at the point P is given by 

j

mn

1j

 
M dim

Atr 
 H

j







       (6) 

Here, H  is the mean curvature. If H vanishes at the each point P of M, then M is said 

to be minimal, [2]. 

The th4  order covariant tensor field defined by 
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)M(X,X)X,X(R,X)X,X,X,X(R i24314321     (7) 

is called the Riemannian curvature tensor and its value at a point MP is called Riemannian 

curvature of M at P.  

The sectional curvature function is defined by 

K
R

( )
( )

X ,Y
X ,Y X ,Y >  

X , X Y ,Y > X ,Y
p p

p p p p

p p p p p p




    2

 

  (8) 

where PP Y,X  are the tangent vectors of tangent plane of M at P. Thus, )Y,X(K PP  is called 

the sectional curvature of M at P.  

The Ricci curvature tensor field S of M is defined by 

S X Y R ei i

i

m

( , ) (



  , X)Y,  e i

1

     (9) 

where  m21 e,...,e,e  is a system of orthonormal base of )P(TM  and  






spacelikeeif,1

timelikeeif,1
e,e

i

i

iii

. 

The value of S(X,Y)  at MP  is called the Ricci curvature. The scalar curvature skr  of 

M is given by 

 
 


ji ji

jijisk )e,e(K2)e,e(Kr      (10) 

2. The Curvatures of (m+1)-Dimensional Timelike Parallel ip -Equidistant Ruled 

Surfaces with a Timelike Base Curve in Minkowski Space 
n

1R  

In this Section, (m+1)-dimensional timelike parallel ip -equidistant ruled surfaces with 

a timelike base curve in Minkowski space 
n

1R  are defined. Then, the curvatures of these 

surfaces are obtained.  

Let   and * be two differentiable timelike curves parameterized by arc length in 
n

1R  

and  k21 V,,V,V   and  

k21 V,,V,V  , nk  , be their Frenet frames at the points  (t) and 

*(t*), respectively. Suppose that M and M* are (m+1)-dimensional timelike ruled surfaces 

with a timelike base curve in the Minkowski space 
n

1R  and  m21m V,,V,V)t(E   and 

   m21m V,,V,V)t(E  , 2km2  , are their generating spaces. Then M and M* can be 

parametrically given by: 

M: 



m

1i

iim1 )t(Vu)t()u,,u,t(X  ,   1mX,,X,Xrank
m1 uut  ,  (11) 
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M*:   


 
m

1i

iim1 )t(Vu)t(u,,u,tX  ,   1mX,,X,Xrank
m1 uut


  . (12) 

 

Definition 2.1. Let M and M* be (m+1)-dimensional two timelike ruled surfaces with a 

timelike base curve. Moreover k1k21 p,p,...,p,p   denotes distances between the (k-1)- 

dimensional osculator planes  

 k32 V,,V,VSp 
 
and  

k32 V,,V,VSp  , 

 k1k431 V,V,,V,V,VSp 
 
and  





k1k431 V,V,,V,V,VSp   

 k2k3k21 V,V,V,,V,VSp 
 
and  









k2k3k21 V,V,V,,V,VSp   

 1k2k21 V,V,,V,VSp   and  









1k2k21 V,V,,V,VSp   

respectively.   

If 

1) 1V  and 


1V  are parallel,  

2) The distances ip , ki1  , between the (k-1)-dimensional osculator planes at the 

corresponding points of   and  * are constant, 

then the pair of timelike ruled surfaces M and M* are called the (m+1)-dimensional timelike 

parallel ip -equidistant ruled surfaces with a timelike base curve in the Minkowski space 
n

1R . 

Throughout this paper M and M* will be assumed (m+1)-dimensional timelike parallel 

ip -equidistant ruled surfaces with a timelike base curve in the Minkowski space 
n

1R . 

From Definition 2.1, we have  


 11 VV  

Then, we find the Frenet frames  k21 V,,V,V   and  

k21 V,,V,V   are equivalent at 

the corresponding points of   and  *. 

If ik  and 


ik  are the curvatures of    and  *, respectively, then we can write 

1iii V,Vk 
   and 



 
 1iii V,Vk  

From the Frenet formulas we can give following theorem: 

Theorem 2.1. Let M and M* be (m+1)-dimensional timelike parallel ip -equidistant ruled 

surfaces with a timelike base curve. 

i)  The Frenet frames  k21 V,,V,V   and  

k21 V,,V,V   are equivalent at the corresponding 

points of   and *. 

ii) For the curvatures ik  and 


ik  of   and *, respectively, we obtain 

ii k
dt

dt
k



  , ki1   
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If 
  is a vector with initial point )t(  and ending point )t(   of the base curves   

and * of M and M*, respectively. Then the vector 
 can be written  

kk1m1mmm2211 Va...VaVaVaVa  

  , IRa i  , ki1    

Then, we get  

ki2,aV,,aV, ii

*

11

* 
, 

and 

1 , 1,

, 2 .
i

i

a i
p

a i k

  
 

 

 

Hence, we have 

kkmm2211 Vp...VpVpVp   . 

Then we can give following theorem: 

Theorem 2.2. Let M and M* be (m+1)-dimensional timelike parallel ip -equidistant ruled 

surfaces with a timelike base curve .The relation between the base curves of M and M* is  

kkmm2211 Vp...VpVpVp   . 

The space  
m21m21 V,,V,V,V,,V,VSp   is called the asymptotic bundle of M with 

respect to )t(Ek  and denoted by A(t).  

If A(t) and )t(A 
 are asymptotic bundles of M and M*, respectively, then we have  

 1 2 1 2( ) , , , , , , ,m mA t Sp V V V V V V
  

  

and 







 

 

m21m21 V,,V,V,V,,V,VSp)t(A  . 

The space  

,V,,V,V,V,,V,VSp m21m21   is called the tangential bundle of M 

with respect to )t(Ek  and denoted by T(t). 

Let T(t) and )t(T 
 are the tangential bundles of M and M*, respectively. So the 

tangential bundles of  M and M* are given by 

                          


 ,V,,V,V,V,,V,VSp)t(T m21m21   

and 







 




  ,V,,V,V,V,,V,VSp)t(T m21m21  . 

Using Definition 2.1 and Theorem 2.1, we find 

A(t)= )t(A 
=T(t)= )t(T 

. 
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Then we can give following theorem: 

Theorem 2.3. Let M and M* be (m+1)-dimensional timelike parallel ip -equidistant ruled 

surfaces with timelike base curve. All the asymptotic and tangential bundles of M and M* are 

equal.  

Now, let us find the matrices 
j

A  and  j

A , 1mnj1  , of M and M*, respectively. 

If we use the equations (11) and (12), we can easily see that 







m

1i

ii1t VuVX , 1u VX
1
 ,, mu VX

m
  

and 







m

1i

*

i

*

i

*

1

*

t
VuVX * ,  *

1

*

u
VX *

1

 ,, *

m

*

u
VX *

m


 

giving the orthonormal bases  1m1 V,,V   and  





1m1 V,,V   of M and M*, respectively. If 

we take the orthonormal bases of the normal bundles M  and M*   as 

 1mn1mk1 ,,,,     and  







  1mn1mk1 ,,,,   then we get the orthonormal bases

 1mn1mk11m1 ,,,,,V,,V    and  











  1mn1mk11m1 ,,,,,V,,V   of 
n

1R  at P

M and P M*, respectively, where i1mi V   and 




  i1mi V , 1mki1  . If D , D 

and D  are the Levi-Civita connections of 
n

1R , M and M*, respectively, then the Weingarten 

equations are as follows; 

                    

1

1

1 1

1 1

1 1

1 1

( 1) ( 1)

1 1

, 1 1,

, 1 1,
m

m n m
j j

V j i i q q

i q

m n m
j j

V j m i i m q q

i q

D a V b j n m

D a V b j n m

 

 


  

 

  

 

 

     

     

 

 

                                   (13) 

Using the equation (13), for the matrix ,1mnj1,A
j

  we get 

                                

























j

)1m)(1m(

j

2)1m(

j

1)1m(

j

)1m(1

j

12

j

11

aaa

aaa

A
j







.                                                   (14) 

Since   is a timelike curve, one can find following equations 

                         

1 1

1 1

1 1

11 ( 1)1

12 2 ( 1)2 2

1( 1) 1 ( 1)( 1) 1

, ,

, ,

, ,

m

m

m

j j

V j m V j

j j

V j m V j

j j

m V j m m m V j m

a D V a D V

a D V a D V

a D V a D V

 

 

 











    

   

 

 

                            (15) 

From the equations (2), (3), (14) and (15), we obtain  
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)1m()1m(

1m

V

000

000

k00

AA
2m1




































 and 0A
j
 , 1mnj2  .  (16) 

 

Similarly, if 
  is any normal vector field on M*, we can write 





   XX
D)X(AD . 

Then there exists the following equalities 

                         

1

1

1 1

1 1

1 1

1 1

( 1) ( 1)

1 1

, 1 1,

, 1 1,
m

m n m
j j

j i i q qV
i q

m n m
j j

j m i i m q qV
i q

D c V d j n m

D c V d j n m

 

 






  
  

 

  
  

 

 

     

     

 

 

                              (17) 

Therefore, for the matrix  j

A , 1mnj1  ,  

                                 

























j

)1m)(1m(

j

1)1m(

j

)1m(1

j

11

cc

cc

A
j







, 1mnj1                                     (18) 

can be written. Since 
*  is a timelike curve, we obtain 

                 

1 1

1 1

1 1

11 1 ( 1)1 1

12 2 ( 1)2 2

1( 1) 1 ( 1)( 1) 1

, ,

, ,

, ,

m

m

m

j j

j m jV V

j j

j m jV V

j j

m j m m m j mV V

c D V c D V

c D V c D V

c D V c D V

 

 

 

 


 


 


   



   



   

    

   

 

 

                                       (19) 

From the equations (2), (3), (18) and (19), we see that 

)1m()1m(

1m

V

000

000

k00

AA
2m1





























 












and 0A
j


, 1mnj2  .  (20) 

Using the Theorem 2.1.ii, we find   

1mnj2,0AA,A
dt

dt
A

jj11

   . 

Therefore we have the following theorem. 
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Theorem 2.4. Let M and M* be (m+1)-dimensional timelike parallel ip -equidistant ruled 

surfaces with a timelike base curve in 
n

1R . For the matrices
j

A   and  j

A , 1mnj1  , 

we get 

1mnj2,0AA,A
dt

dt
A

jj11

   . 

Considering the definition of the Lipschitz-Killing curvature in the direction of j  is 

found to be   

0Adet),P(G
jj       for all P  M, 1mnj1  . 

Similarly, the Lipschitz-Killing curvature in the direction of 
*

j of  M*, becomes 

 




 Pallfor,1mnj1,0Adet),P(G
j

j M*. 

If H and H* are the mean curvature vectors of  M and M*, then from the equations (16) 

and (20)  we have 

0
Mdim

Atr
HH

1mn

1j

j
i





  . 

Therefore, following theorems can be given. 

Theorem 2.5. Assume that M and M* are (m+1)-dimensional timelike parallel ip -equidistant 

ruled surfaces with a timelike base curves in 
n

1R . The Lipschitz-Killing curvatures of M and 

M* in all normal directions vanish. 

Theorem 2.6. Let M and M* be (m+1)-dimensional timelike parallel ip -equidistant ruled 

surfaces with a timelike base curve in 
n

1R . M and M* are minimal ruled surfaces. 

Now, let us find the second fundamental forms, Riemannian curvatures, skalar 

curvatures and Ricci curvatures of (m+1)-dimensional timelike parallel ip -equidistant ruled 

surfaces with a timelike base curve in Minkowski space 
n

1R . 

If X and Y are vector fields and V is the second fundamental form of M, then from the 

equations (3) and (4), we obtain 







1mn

1j

jjXD,Y)Y,X(V . 

Thus, for the Frenet vectors iV  and jV , 1mj,i1  , we have  







1mn

1s

ssVjji i
D,V)V,V(V , 1mj,i1  . 

Then, from the equation (13), we get 








 



 1j,1

1j,1
V,V,a)V,V(V jjj

1mn

1s

s

s

ijjji . 
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Using the equation (16), we give 

                                  

1

1 1 1( 1) 1 2

1

1

1

( , ) ,

( , ) 0 , 1 , 1 .

n m
s

m m s m m

s

n m
s

i j j ij s

s

V V V a k V

V V V a i j m



 

 

   



 



  

     





                             (21) 

Similarly, if X  and Y  are vector fields and 
V  is the second fundamental form of 

M*, then from the equation (2) and (3), we have 

 




 Y),X(A),Y,X(V,YD

X
 ,  


 ** M  

and 






  

1mn

1j

jjX
D,Y)Y,X(V . 

For the Frenet vectors 
*

iV  and 1mj,i1,V*

j  , we can write 

1mj,i1,D,V)V,V(V
1mn

1s

ssVjji
i

 





  

and from the equation (17), we obtain 

1mj,i1,c)V,V(V
1mn

1s

s

s

ijjji  





. 

Using the equation (20), we find 

                                 

1 1 1 2( , ) ,

( , ) 0 , 1 , 1

m m m

i j

V V V k V

V V V i j m

    

  

  



   

                                                     (22) 

From Theorem 2.1, we have 

                                      

1 1 1 1( , ) ( , ) ,

( , ) ( , ) 0 , 1 , 1

m m

i j i j

dt
V V V V V V

dt

V V V V V V i j m

  

 

  



    

                                  (23) 

Hence, we can give following theorem. 

Theorem 2.7. Assume that M and M* are (m+1)-dimensional timelike parallel ip -equidistant 

ruled surfaces with a timelike base curve in 
n

1R . 1V  and 1mV   are conjugate vectors if


1V  and 



1mV  are conjugate vectors. 

Let 
1 1

1 1

,
m m

i i i i

i i

X aV Y bV
 

 

    M. Since 

)V,V(Vba)Y,X(V j

1m

1j,i

iji
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from the equation (21), we have 

)V,V(Vba)Y,X(V 1m11m1  . 

Hence, we can give followings. 

Theorem 2.8. Let M and M* be (m+1)-dimensional timelike parallel ip -equidistant ruled 

surfaces with a timelike base curve in 
n

1R . Also  








1m

1i

ii

1m

1i

ii VbY,VaX M. M is totally 

geodesic iff 0)V,V(V 1m1   or 0ba 1m1  . 

Corollary 2.1. If 0ba 1m1   and M is totally geodesic, then M* is totally geodesic.  

From the equations (7) and (8), we have  

2

PPPPPP

PPPPPPPP

PP

Y,XY,YX,X

)Y,Y(V),X,X(VY,X(V),Y,X(V
)Y,X(K




  

From the last equation and equation (21), we find 

                
2

1m1m1 )k()V,V(K      and   ji,1mj,i1,0)V,V(K ji  .                      (24) 

Similarly, the sectional curvatures of M* are as follows 

                 
2

1m

*

1m

*

1 )k()V,V(K     and ji,1mj,i1,0)V,V(K ji 
.                       (25) 

From Theorem 2.1, we can give following theorem. 

Theorem 2.9. Suppose that M and M* are (m+1)-dimensional timelike parallel ip -

equidistant ruled surfaces with a timelike base curve in 
n

1R . For the Riemannian curvatures of 

M and M*  

 

holds. 

The Ricci curvature in the direction iV  of  M, is given by 

1

1

( , ) ( , ) , , , ,
m

i i j j i i j j j j

j

S V V R V V V V V V 




    1 1i m    

that is 

 
1

1

( , ) ( , ) , ( , ) ( , ) , ( , )
m

i i j j i j i j j i i

j

S V V V V V V V V V V V V V V




      . 

If we use the equation (21), we obtain 

                        2

1 1 1( , ) ( )m m mS V V k    and  ( , ) 0 , 1 .i iS V V i m                                  (26) 

 

2

1 1 1 1( , ) ( , ) ,

( , ) ( , ) 0 , 1 , 1 ,

m m

i j i j

dt
K V V K V V

dt

K V V K V V i j m i j
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The scalar curvature of M is 





ji

ji

ji

jisk )V,V(K2)V,V(Kr . 

From the equation (24), we get  

                                                      2

1m1m1sk )k(2)V,V(K2r   .                                      (27) 

Using the equation (26) we see that 

                                                           )V,V(S2r 1m1msk  .                                                  (28) 

Similarly, for the Ricci curvature in the direction iV   of M*, we have 

                       2

1 1 1( , ) ( )m m mS V V k  

    and  ( , ) 0 , 1 .i iS V V i m                                    (29) 

Moreover, for the scalar curvature of M*, we find 

                                            )V,V(S2)V,V(K2r *

1m

*

1m

*

1m

*

1sk 

  .                                        (30) 

From Theorem 2.1, we get 

)V,V(S
dt

dt
)V,V(S 1m1m

2

1m1m 







 







   and  

sk

2

sk r
dt

dt
r 












 . 

Hence, we can give following theorem. 

Theorem 2.10: Let M and M* be (m+1)-dimensional timelike parallel ip -equidistant ruled 

surfaces with a timelike base curve in 
n

1R . If ( , )i iS V V and ( ( , )sk i ir S V V   and 

skr ) are the 

Ricci and the scalar curvatures of M ( M*),  then we have 

mi1,0)V,V(S)V,V(S ii

*

i

*

i  , 

)V,V(S
dt

dt
)V,V(S 1m1m

2

1m1m 







 







 , 

and 

sk

2

sk r
dt

dt
r 












 . 
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