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This study introduces a newly developed algorithm for fast 
computation of the factorial of big numbers. The algorithm 
reduces by half the number of multiplications required to 
compute the factorial of a number. Then, to speed up the 
multiplication process, the numbers to be multiplied are 
converted into binary trees. Following the conversion, the 
products for the left and right branches of the tree are computed 
synchronically, and the multiplication of the two values yields the 
result of the factorial. 
In computing the factorial of numbers rapidly, 11 non-prime-
number based algorithms are used, which are compared to the 
method developed in this study. Analyses show that the newly 
developed method, in addition to being simpler and easy to use, 
computes the factorial of big numbers much faster compared to 
the other methods. 
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1. Introduction 

The notation n!  is defined for integers 0n ≥  as 

n!=
            1,  if (n = 0)
n.(n−1)!, if (n > 0)
"
#
$

             (1) 

Thus, n!=1.2.3... n . 

                                                
*Corresponding author: E-mail: fatih.kocamaz@kirklareli.edu.tr (A., F., Kocamaz) 
2013.001.02  © 2013 BALKANJM All rights reserved 

 

 

 

Contents lists available at BALKANJM  

BALKAN JOURNAL OF MATHEMATICS 

journal homepage: www.balkanjm.com  

 



F. Cihan et. al. /BALKANJM 01 (2013) 13-27 
 

17 

A weak upper bound on the factorial function is n!≤ nn , since each of the  terms in 

the factorial product is at most  [1]. Stirling’s approximation, 

n!= 2πn n
e
!

"
#
$

%
&
π

ean             (2) 

where 

1
12n+1

< an < 1
12n

            (3) 

Stirling’s approximation yields a result very close to the real result, though the result of 

the number whose factorial is to be computed is not absolute. However, the higher the value 

of , the closer one gets to the real result. This is illustrated in Equation (4). 

lim
n→∞

n!

2πn n
e
#

$
%
&

'
(
π =1             (4) 

The factorial function is used in mathematics, the number theory, the probability theory, 

exponential, trigonometric and hyperbolic functions, series expansions, permutations and 

combinations. As such, fast computation of factorial is highly significant. 

Most basic occurrence of the factorial operation is the fact that there are n!  ways to 

arrange n distinct objects into a sequence. This fact was known at least as early as the 12th 

century, to Indian scholars [2]. The notation n!  was introduced by Christian Kramp in 1808 

[3]. 

The asymptotically best efficiency is obtained by computing n!  from its prime 

factorization. Prime factorization allows n!  to be computed in time O(n(logn log log n)2 ) , 

provided that a fast multiplication algorithm is used [4]. 

The method that computes the factorial as a product of the numbers 1− n  is known as 

the naive product [1, 5]. Considering function call overhead, the recursive method is even 

slower than the naive product. Computing factorials has long been a tedious task, requiring 

many multiplications and working with numbers that grow exponentially by the number of 

digits of their values [6]. Such cases greatly increase the time required to compute the 

factorial of big numbers. This has led researchers to develop faster factorial computation 

methods, including BoitenSplit, Split, Swing Simple, Swing, Square Difference etc. 

BoitenSplit algorithm transforms the multiplication of even numbers into shift operations and 

n

n

n
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applies multiplication only to odd numbers [7]. Swing Simple is a simple Swing algorithm. 

Square Difference is an algorithm based on the differences of squares. A benchmark program 

developed by Peter Luschny features most of fast factorial computation algorithms [8]. The 

11 fast factorial computation algorithms used in this study can be found in that benchmark 

program. 

2. Description and Complexity of the fast factorial computation algorithm 

The algorithm introduced in this study uses the following approximation in computing 

the factorial of numbers. This approximation reduces by half the number of multiplications in 

computing the factorial. In this approximation, the number whose factorial is to be calculated 

is factorized. After that, the first term is multiplied by the last term; then the second term is 

multiplied by the second-from-last term etc., thus multiplying all the terms. Equation (7) 

illustrates this. 

n!=1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20n        (5) 

n!= n.2(n−1).3(n− 2).4(n−3).5(n− 4)n
2
n
2
+1

"

#
$

%

&
'         (6) 

n!= n.(2n− 2).(3n− 6).(4n−12).(5n− 20) n2 + 2n
4

"

#
$

%

&
'        (7) 

Afterwards, the difference between terms is considered. (8) shows the difference 

between terms. As can be seen, the difference between terms is 2, which is a constant. (8) 

shows further that the difference between the last two terms is 2. 

(2n− 2)− n
(n−2)

   .(3n− 6)− (2n− 2)
(n−4)

   .(4n−12)− (3n− 6)
(n−6)

  
n2 + 2n
4

"

#
$

%

&
'−

n2 + 2n−8
4

"

#
$

%

&
'

(2)
  

    (8) 

Thus, the factors required for 20!  are as in (9). An analysis of the difference between 

factors for 20!  shows that the first difference is 18 . In other words, it is always the number 

whose factorial is to be calculated minus 2 . Then, the difference decreases by two, ultimately 

reducing down to 2 . Thus, the value of the second difference becomes 16 , and that of the 

last difference becomes 2 . Crucially, the number of multiplications required for 20!  is 

reduced from 20  to 9 . 

20!= 20.38.54.68.90.98.104.108.110           (9) 
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This rule can be used with odd numbers as well as even numbers, though with a little 

trick. Assuming n to be odd, its factorial can be considered as n.(n−1)! . Thus, in computing 

n! , one can first calculate (n−1)!  using the above method, and then multiply the result by the 

value of n . 

The method developed to compute the factorial of even numbers is formulated in (10). 

The formula is explained next. 

2.1 Theorem The formula developed to compute the factorial of even numbers is as follows: 

when n >1 and n  is even; 

n!= [2+ 4++ (n− 2)+ n].[4+ 6++ (n− 2)+ n][(n− 2)+ n].n     (10) 

Proof If we choose the method of induction to prove the theorem. 

Let us assume that; 

for   n = 2,   2!= 2           (11) 

for   n = 4,   4!= (2+ 4).4 = 6.4 = 24         (12) 

for   n = k,   k!= [2+ 4++ (k − 2)+ k].[4+ 6++ (k − 2)+ k].k     (13) 

And show that; 

for   n = k + 2,   (k + 2)!= [2+ 4++ k + (k + 2)]..[k + (k + 2)].(k + 2)    (14) 

Then, we get 

(k + 2)!= (k + 2).(k +1).k!          

= (k + 2).(k +1).[2+ 4++ (k − 2)+ k].[4+ 6++ (k − 2)+ k].k       

= (k + 2).(k +1). k
2
!

"
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2
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= [2+ 4++ k + (k + 2)].[4+ 6++ k + (k + 2)]..[k + (k + 2)].(k + 2)     

Which proves the theorem. 
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The method developed for fast factorial computation is shown to greatly reduce the 

number of multiplications required. (15) gives the number of multiplications required to 

compute the factorial of a number. Here, n  is the number whose factorial is to be computed, 

and f (n)  is the number of multiplications required to compute the factorial of n . 

1,   if   is even
2( )
   ,  if   is odd

2

n n
f n

n n

⎧ −⎪⎪
= ⎨
⎪
⎪⎩

         (15) 

The number is first factorized and then the factors are multiplied with one another, 

which yields the result. However, multiplying these numbers in natural methods takes a much 

longer time than multiplying the factors in the binary tree structure, hence our preference of 

the binary tree structure. Due to the use of the binary tree structure, the multiplication 

function is recursive. Figure 1 illustrates this point.  

 

 

 

 
 

 
 

 
 

 
 

The general form for the time complexity of a recursion tree has been shown in (16) 

equation. Here “ a ” and “ b ” rates are arbitrary substantive. f (n)  function is a function of n . 

According to this equation the tree in (n / b)  dimension is divided into sub problem till a . 

The reunification of these sub problems gives the rate of f (n)  function. The time complexity 

of level 1 which is the sub-level of the root node of tree has been shown in (17) equation. This 

situation goes on until it is reached to the leaves of tree.   

T (n) = a.T n
b( )+ f (n)           (16) 

 

  

    

 

 

 

Figure 1. A recursion tree for the recurrence  
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T n
b( ) = a.T n

b2( )+ f n b( )          (17) 

The basic situation in the leaves is related to 1≤ n ≤ b . By this way tree has logb n  

level. The total number of the leaves is the same as it is shown in (18) equation. 

a logb n = n logb a            (18) 

According to this, the total of consumed time is the total of the consumed time in every 

level. Then, the consumed time in i  level is ai f (n bi ) . The level of the tree is logb n  then i  

interval is from 0  to logb n−1 . In this situation, the total consumed time with the consumed 

time in every level is as the same as the total number of consumed time in the leaves. This is 

shown in (19) equation. 

T (n) = ai. f n
bi
!

"
#

$

%
&

i=0

logb (n−1)∑ +O n logb a( )         (19) 

Since the used tree structure in developed algorithm is a complete tree and the cost of 

every leaf is fixed the total cost of the entire leaves is as it is in (20). However, if we want to 

show the top limit of the cost for the worst situation, we show it as it is in (21) equation.  

( ) ( )log
only all leaves( ) logb a

bT n O n nω= =         (20) 

( )only all leaves( ) logbT n O n a=          (21) 

The asymptotic growth of f (n)  function located in (19) equation is compared with the 

asymptotic growth of the number of leaves. If the growth of leaves is slower than f  function, 

the time cost is as it is shown in (22) term. If the growth of leaves and f function is the same, 

the cost of time is as it is shown in (23) term. But if the growth of f  function is faster than 

the growth of leaves, the cost of time is as it is shown in (24) term.  

T (n) =O n logb a( )           (22) 

T (n) =Θ n logb a logn( )           (23) 

T (n) =Θ f n( )( )           (24) 
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Since the time complexity of the developed algorithm is T (n 2) = 2T (n 4)+ (n 2) , 

f (n)  equates (n 2) . The rate is 2 and b rate is 4. The total number of leaves is as it is shown 

in (18) equation. According to this the number of leaves is n1 2 . According to this, f (n)

function is growing faster than the number of leaves. As a result of this, a time complexity 

that is shown in (24) equation occurs. That’s to say, time complexity is as it is below:  

T (n) =Θ( f (n)) =Θ(n)           (25) 

For the tree shown in Figure 1, the calculations have been done simultaneously from 

level 1. Thus, time complexity is done as it is in (26) equation. As it is seen in this equation, 

the time complexity of algorithm has decreased.   

T n
4( ) = 2.T n

8( )+ f n 4( )          (26) 

T (n) =Θ(n 4)            (27) 

Consequently, the time cost of algorithm is as it is shown (27) equation. This situation 

shows that algorithm has increased the multiplier number performance and other methods 

have provided additional contribution to this situation. 

3. Algorithm Details 

Algorithm has been developed by using .NET 4.0 library and C# programming 

language in MS Visual Studio 2010. So as to calculate the factorial of bigger numbers, 

“System.Numerics.BigInteger” [9] data type has been used. The details of algorithm have 

been shown as Pseudo code below.  

In Figure 2, the starting functions of algorithms were given. In this function, if n value 

takes a value under 0, the practice throws an exception. If the n value is higher than 0 and 

lowers than 7, the factorial of the number between these intervals is returned. The reason for 

making such kind of an operation is that for n value, one branch of the tree needs n 4  

element. For each number lower than 7, this value will be 1. For such a situation, because a 

binary tree hasn’t been prepared, the factorial of the number until 7 is kept in a line and 

returned. 
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Figure 2. Main function 

In Figure 3, to calculate the factorial of numbers higher than 6, a function named 

“Initialize Factorial” is shown. In this function, there are made operations according to 

whether the number whose factorial is to be calculated is uneven or even number. For, the 

multiplying number changes depending on if the number is uneven or even. The change of 

multiplying number (15) is shown in the expression. Besides these procedures, the factors of 

the number whose factorial is to be found are thrown into a set. The numbers put in the set are 

sent to the function called “Synchronized Binary Tree” to be multiplied. The result obtained 

from this function is then multiplied with 2n 2 for; its factors are two times of each one. 

 
Figure 3. Initialize Factorial function 
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In Figure 4, the factors of the number whose factorial is to be found are turned into 

binary tree structure. For the calculation times of the left and right branches of the tree to be 

same, the left and right branches are calculated simultaneously. Thus, the calculation speed is 

raised. 

 
Figure 4. Synchronized Binary Tree function 

In Figure 5, the factors of the number whose factorial is to be found start to be 

multiplied with each other. On such a tree, the leaves have not been designed in the way to 

send the value of each number. On the leaves, at least two numbers are multiplied with each 

other and a result is returned. Hence, the depth of the tree doesn’t always have a changeable 

structure. Besides, the tree is enabled to be a full tree. Such a structure runs with a better 

performance comparing with another structure. 

 
Figure 5. Recursive Binary Tree function 

4. Results and discussion 

The tests of algorithm have been realized in benchmark program called “Silver 

Factorial” that is developed by Peter Luschny. The algorithms chosen for testing are: 

SquaredDiff, ProductRecursive, Boiten Split, SwingDouble, SwingRational, SwingSimple, 

Hyper, SwingRationalDbl, Split, SquaredDiffProd and Swing. These algorithms were 
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implemented in on the Windows 7 Ultimate operating system, with a Intel® Core™ i7 CPU 

Q 740 @ 1.73 GHz and 4 GB of RAM. According to the tests done, it has been seen that 

newly developed algorithms are faster than the other algorithms. The results of tests done are 

seen in Table 1. When the results are investigated, it is seen that the best result is given by the 

newly developed algorithms. Secondly, the fastest algorithm is Swing. Then is 

SquaredDiffProd algorithm. The developed algorithm has produced the same fast result as it 

is in Split algorithm when calculating the factorial of 5000 number. However, it has gone 

beyond in the other algorithms that have bigger worthies after this value.  

The algorithms that are used in the tests are not the algorithms based on prime numbers. 

According to the tests done, the reason behind the fact why these algorithms have been 

chosen is the fact that new algorithm can do fast factorial calculation based on normal 

methods. Furthermore, the developed algorithm has an easy and simple applicable structure. 

Table 1. The comparative results of calculations of fast factorial algorithms (in milliseconds) 

n 
1000 2500 5000 10000 25000 50000 100000 Average 

Algorithms 

Our 1 6 24 86 743 3285 14643 2684 
Swing 0 5 26 119 900 4054 16576 3097 

SquaredDiffProd 1 5 28 114 884 3827 15323 2883 

Split 0 5 24 107 903 4128 18442 3372 
SwingRationalDbl 1 7 33 128 1194 4905 19777 3720 

Hyper 1 10 29 121 1070 4891 21685 3972 

SwingSimple 1 10 40 155 1240 5106 21681 4033 

SwingRational 1 8 35 134 1003 5106 22706 4141 
SwingDouble 1 7 34 127 843 4502 19761 3610 

BoitenSplit 1 8 37 146 1194 5172 25189 4535 

ProductRecursive 1 7 33 133 1165 5113 22726 4168 
SquaredDiff 1 11 43 170 1314 5675 30995 5458 

 

5. Conclusion 

As a result, the developed algorithm factorial, at worst situation, decreases the 

multiplication number, which is necessary for the number to be calculated, to the half. By this 

way, the calculations at high speed can be done. The tests have been done according to 11 

algorithms and newly developed algorithm. 11 algorithms used for comparison are not the 
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fast factorial calculation algorithms based on prime numbers. According to the tests done, 

newly developed algorithm factorial calculates the results of the numbers that will be 

calculated in a fastest way. If the complexity of algorithm is shown via Theta notation, it will 

be as Θ n
4( ) . 
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