
BALKANJM 01 (2013) 16-27

A New Method for Fast Computation of Factorials of Numbers

Fikret Cihana, Fatih Aydinb, Adnan Fatih Kocamaz*c
a Vocational School of Technical Sciences, Kirklareli University, Kirklareli, Turkey
bDepartment of Computer Programming, Kirklareli University, Kirklareli, Turkey

c Department of Software Engineering, Kirklareli University, Kirklareli, Turkey

ARTICLE INFO

ABSTRACT
Article history:
Received 23 December 2012
Accepted 23 January 2013
Available online 6 February 2013

This study introduces a newly developed algorithm for fast
computation of the factorial of big numbers. The algorithm
reduces by half the number of multiplications required to
compute the factorial of a number. Then, to speed up the
multiplication process, the numbers to be multiplied are
converted into binary trees. Following the conversion, the
products for the left and right branches of the tree are computed
synchronically, and the multiplication of the two values yields the
result of the factorial.
In computing the factorial of numbers rapidly, 11 non-prime-
number based algorithms are used, which are compared to the
method developed in this study. Analyses show that the newly
developed method, in addition to being simpler and easy to use,
computes the factorial of big numbers much faster compared to
the other methods.

 © 2013 BALKANJM All rights reserved.

Keywords:
Analyze of algorithm Factorial
Binary tree
Fast factorial computation

1. Introduction

The notation n! is defined for integers 0n ≥ as

n!=
 1, if (n = 0)
n.(n−1)!, if (n > 0)
"
#
$

 (1)

Thus, n!=1.2.3... n .

*Corresponding author: E-mail: fatih.kocamaz@kirklareli.edu.tr (A., F., Kocamaz)
2013.001.02 © 2013 BALKANJM All rights reserved

Contents lists available at BALKANJM

BALKAN JOURNAL OF MATHEMATICS

journal homepage: www.balkanjm.com

F. Cihan et. al. /BALKANJM 01 (2013) 13-27

17

A weak upper bound on the factorial function is n!≤ nn , since each of the terms in

the factorial product is at most [1]. Stirling’s approximation,

n!= 2πn n
e
!

"
#
$

%
&
π

ean (2)

where

1
12n+1

< an < 1
12n

 (3)

Stirling’s approximation yields a result very close to the real result, though the result of

the number whose factorial is to be computed is not absolute. However, the higher the value

of , the closer one gets to the real result. This is illustrated in Equation (4).

lim
n→∞

n!

2πn n
e
#

$
%
&

'
(
π =1 (4)

The factorial function is used in mathematics, the number theory, the probability theory,

exponential, trigonometric and hyperbolic functions, series expansions, permutations and

combinations. As such, fast computation of factorial is highly significant.

Most basic occurrence of the factorial operation is the fact that there are n! ways to

arrange n distinct objects into a sequence. This fact was known at least as early as the 12th

century, to Indian scholars [2]. The notation n! was introduced by Christian Kramp in 1808

[3].

The asymptotically best efficiency is obtained by computing n! from its prime

factorization. Prime factorization allows n! to be computed in time O(n(logn log log n)2) ,

provided that a fast multiplication algorithm is used [4].

The method that computes the factorial as a product of the numbers 1− n is known as

the naive product [1, 5]. Considering function call overhead, the recursive method is even

slower than the naive product. Computing factorials has long been a tedious task, requiring

many multiplications and working with numbers that grow exponentially by the number of

digits of their values [6]. Such cases greatly increase the time required to compute the

factorial of big numbers. This has led researchers to develop faster factorial computation

methods, including BoitenSplit, Split, Swing Simple, Swing, Square Difference etc.

BoitenSplit algorithm transforms the multiplication of even numbers into shift operations and

n

n

n

F. Cihan et. al. /BALKANJM 01 (2013) 13-27

18

applies multiplication only to odd numbers [7]. Swing Simple is a simple Swing algorithm.

Square Difference is an algorithm based on the differences of squares. A benchmark program

developed by Peter Luschny features most of fast factorial computation algorithms [8]. The

11 fast factorial computation algorithms used in this study can be found in that benchmark

program.

2. Description and Complexity of the fast factorial computation algorithm

The algorithm introduced in this study uses the following approximation in computing

the factorial of numbers. This approximation reduces by half the number of multiplications in

computing the factorial. In this approximation, the number whose factorial is to be calculated

is factorized. After that, the first term is multiplied by the last term; then the second term is

multiplied by the second-from-last term etc., thus multiplying all the terms. Equation (7)

illustrates this.

n!=1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20n (5)

n!= n.2(n−1).3(n− 2).4(n−3).5(n− 4)n
2
n
2
+1

"

#
$

%

&
' (6)

n!= n.(2n− 2).(3n− 6).(4n−12).(5n− 20) n2 + 2n
4

"

#
$

%

&
' (7)

Afterwards, the difference between terms is considered. (8) shows the difference

between terms. As can be seen, the difference between terms is 2, which is a constant. (8)

shows further that the difference between the last two terms is 2.

(2n− 2)− n
(n−2)

   .(3n− 6)− (2n− 2)
(n−4)

   .(4n−12)− (3n− 6)
(n−6)

  
n2 + 2n
4

"

#
$

%

&
'−

n2 + 2n−8
4

"

#
$

%

&
'

(2)
  

 (8)

Thus, the factors required for 20! are as in (9). An analysis of the difference between

factors for 20! shows that the first difference is 18 . In other words, it is always the number

whose factorial is to be calculated minus 2 . Then, the difference decreases by two, ultimately

reducing down to 2 . Thus, the value of the second difference becomes 16 , and that of the

last difference becomes 2 . Crucially, the number of multiplications required for 20! is

reduced from 20 to 9 .

20!= 20.38.54.68.90.98.104.108.110 (9)

F. Cihan et. al. /BALKANJM 01 (2013) 13-27

19

This rule can be used with odd numbers as well as even numbers, though with a little

trick. Assuming n to be odd, its factorial can be considered as n.(n−1)! . Thus, in computing

n! , one can first calculate (n−1)! using the above method, and then multiply the result by the

value of n .

The method developed to compute the factorial of even numbers is formulated in (10).

The formula is explained next.

2.1 Theorem The formula developed to compute the factorial of even numbers is as follows:

when n >1 and n is even;

n!= [2+ 4++ (n− 2)+ n].[4+ 6++ (n− 2)+ n][(n− 2)+ n].n (10)

Proof If we choose the method of induction to prove the theorem.

Let us assume that;

for n = 2, 2!= 2 (11)

for n = 4, 4!= (2+ 4).4 = 6.4 = 24 (12)

for n = k, k!= [2+ 4++ (k − 2)+ k].[4+ 6++ (k − 2)+ k].k (13)

And show that;

for n = k + 2, (k + 2)!= [2+ 4++ k + (k + 2)]..[k + (k + 2)].(k + 2) (14)

Then, we get

(k + 2)!= (k + 2).(k +1).k!

= (k + 2).(k +1).[2+ 4++ (k − 2)+ k].[4+ 6++ (k − 2)+ k].k

= (k + 2).(k +1). k
2
!

"
#
$

%
&.
k + 2
2

!

"
#

$

%
&.
k − 2
2

!

"
#

$

%
&.
k + 4
2

!

"
#

$

%
&.
k − 4
2

!

"
#

$

%
&..

4
2
. k − 2

2
!

"
#

$

%
&.k

=
k + 2
2

!

"
#

$

%
&.
k + 4
2

!

"
#

$

%
&.
k
2
!

"
#
$

%
&.
k + 6
2

!

"
#

$

%
&.
k − 2
2

!

"
#

$

%
&.
k +8
2

!

"
#

$

%
&..

4
2
. 2k + 2

2
!

"
#

$

%
&.(k + 2)

= [2+ 4++ k + (k + 2)].[4+ 6++ k + (k + 2)]..[k + (k + 2)].(k + 2)

Which proves the theorem.

F. Cihan et. al. /BALKANJM 01 (2013) 13-27

20

The method developed for fast factorial computation is shown to greatly reduce the

number of multiplications required. (15) gives the number of multiplications required to

compute the factorial of a number. Here, n is the number whose factorial is to be computed,

and f (n) is the number of multiplications required to compute the factorial of n .

1, if is even
2()
 , if is odd

2

n n
f n

n n

⎧ −⎪⎪
= ⎨
⎪
⎪⎩

 (15)

The number is first factorized and then the factors are multiplied with one another,

which yields the result. However, multiplying these numbers in natural methods takes a much

longer time than multiplying the factors in the binary tree structure, hence our preference of

the binary tree structure. Due to the use of the binary tree structure, the multiplication

function is recursive. Figure 1 illustrates this point.

The general form for the time complexity of a recursion tree has been shown in (16)

equation. Here “ a ” and “ b ” rates are arbitrary substantive. f (n) function is a function of n .

According to this equation the tree in (n / b) dimension is divided into sub problem till a .

The reunification of these sub problems gives the rate of f (n) function. The time complexity

of level 1 which is the sub-level of the root node of tree has been shown in (17) equation. This

situation goes on until it is reached to the leaves of tree.

T (n) = a.T n
b()+ f (n) (16)

Figure 1. A recursion tree for the recurrence

F. Cihan et. al. /BALKANJM 01 (2013) 13-27

21

T n
b() = a.T n

b2()+ f n b() (17)

The basic situation in the leaves is related to 1≤ n ≤ b . By this way tree has logb n

level. The total number of the leaves is the same as it is shown in (18) equation.

a logb n = n logb a (18)

According to this, the total of consumed time is the total of the consumed time in every

level. Then, the consumed time in i level is ai f (n bi) . The level of the tree is logb n then i

interval is from 0 to logb n−1 . In this situation, the total consumed time with the consumed

time in every level is as the same as the total number of consumed time in the leaves. This is

shown in (19) equation.

T (n) = ai. f n
bi
!

"
#

$

%
&

i=0

logb (n−1)∑ +O n logb a() (19)

Since the used tree structure in developed algorithm is a complete tree and the cost of

every leaf is fixed the total cost of the entire leaves is as it is in (20). However, if we want to

show the top limit of the cost for the worst situation, we show it as it is in (21) equation.

() ()log
only all leaves() logb a

bT n O n nω= = (20)

()only all leaves() logbT n O n a= (21)

The asymptotic growth of f (n) function located in (19) equation is compared with the

asymptotic growth of the number of leaves. If the growth of leaves is slower than f function,

the time cost is as it is shown in (22) term. If the growth of leaves and f function is the same,

the cost of time is as it is shown in (23) term. But if the growth of f function is faster than

the growth of leaves, the cost of time is as it is shown in (24) term.

T (n) =O n logb a() (22)

T (n) =Θ n logb a logn() (23)

T (n) =Θ f n()() (24)

F. Cihan et. al. /BALKANJM 01 (2013) 13-27

22

Since the time complexity of the developed algorithm is T (n 2) = 2T (n 4)+ (n 2) ,

f (n) equates (n 2) . The rate is 2 and b rate is 4. The total number of leaves is as it is shown

in (18) equation. According to this the number of leaves is n1 2 . According to this, f (n)

function is growing faster than the number of leaves. As a result of this, a time complexity

that is shown in (24) equation occurs. That’s to say, time complexity is as it is below:

T (n) =Θ(f (n)) =Θ(n) (25)

For the tree shown in Figure 1, the calculations have been done simultaneously from

level 1. Thus, time complexity is done as it is in (26) equation. As it is seen in this equation,

the time complexity of algorithm has decreased.

T n
4() = 2.T n

8()+ f n 4() (26)

T (n) =Θ(n 4) (27)

Consequently, the time cost of algorithm is as it is shown (27) equation. This situation

shows that algorithm has increased the multiplier number performance and other methods

have provided additional contribution to this situation.

3. Algorithm Details

Algorithm has been developed by using .NET 4.0 library and C# programming

language in MS Visual Studio 2010. So as to calculate the factorial of bigger numbers,

“System.Numerics.BigInteger” [9] data type has been used. The details of algorithm have

been shown as Pseudo code below.

In Figure 2, the starting functions of algorithms were given. In this function, if n value

takes a value under 0, the practice throws an exception. If the n value is higher than 0 and

lowers than 7, the factorial of the number between these intervals is returned. The reason for

making such kind of an operation is that for n value, one branch of the tree needs n 4

element. For each number lower than 7, this value will be 1. For such a situation, because a

binary tree hasn’t been prepared, the factorial of the number until 7 is kept in a line and

returned.

F. Cihan et. al. /BALKANJM 01 (2013) 13-27

23

Figure 2. Main function

In Figure 3, to calculate the factorial of numbers higher than 6, a function named

“Initialize Factorial” is shown. In this function, there are made operations according to

whether the number whose factorial is to be calculated is uneven or even number. For, the

multiplying number changes depending on if the number is uneven or even. The change of

multiplying number (15) is shown in the expression. Besides these procedures, the factors of

the number whose factorial is to be found are thrown into a set. The numbers put in the set are

sent to the function called “Synchronized Binary Tree” to be multiplied. The result obtained

from this function is then multiplied with 2n 2 for; its factors are two times of each one.

Figure 3. Initialize Factorial function

F. Cihan et. al. /BALKANJM 01 (2013) 13-27

24

In Figure 4, the factors of the number whose factorial is to be found are turned into

binary tree structure. For the calculation times of the left and right branches of the tree to be

same, the left and right branches are calculated simultaneously. Thus, the calculation speed is

raised.

Figure 4. Synchronized Binary Tree function

In Figure 5, the factors of the number whose factorial is to be found start to be

multiplied with each other. On such a tree, the leaves have not been designed in the way to

send the value of each number. On the leaves, at least two numbers are multiplied with each

other and a result is returned. Hence, the depth of the tree doesn’t always have a changeable

structure. Besides, the tree is enabled to be a full tree. Such a structure runs with a better

performance comparing with another structure.

Figure 5. Recursive Binary Tree function

4. Results and discussion

The tests of algorithm have been realized in benchmark program called “Silver

Factorial” that is developed by Peter Luschny. The algorithms chosen for testing are:

SquaredDiff, ProductRecursive, Boiten Split, SwingDouble, SwingRational, SwingSimple,

Hyper, SwingRationalDbl, Split, SquaredDiffProd and Swing. These algorithms were

F. Cihan et. al. /BALKANJM 01 (2013) 13-27

25

implemented in on the Windows 7 Ultimate operating system, with a Intel® Core™ i7 CPU

Q 740 @ 1.73 GHz and 4 GB of RAM. According to the tests done, it has been seen that

newly developed algorithms are faster than the other algorithms. The results of tests done are

seen in Table 1. When the results are investigated, it is seen that the best result is given by the

newly developed algorithms. Secondly, the fastest algorithm is Swing. Then is

SquaredDiffProd algorithm. The developed algorithm has produced the same fast result as it

is in Split algorithm when calculating the factorial of 5000 number. However, it has gone

beyond in the other algorithms that have bigger worthies after this value.

The algorithms that are used in the tests are not the algorithms based on prime numbers.

According to the tests done, the reason behind the fact why these algorithms have been

chosen is the fact that new algorithm can do fast factorial calculation based on normal

methods. Furthermore, the developed algorithm has an easy and simple applicable structure.

Table 1. The comparative results of calculations of fast factorial algorithms (in milliseconds)

n
1000 2500 5000 10000 25000 50000 100000 Average

Algorithms

Our 1 6 24 86 743 3285 14643 2684
Swing 0 5 26 119 900 4054 16576 3097

SquaredDiffProd 1 5 28 114 884 3827 15323 2883

Split 0 5 24 107 903 4128 18442 3372
SwingRationalDbl 1 7 33 128 1194 4905 19777 3720

Hyper 1 10 29 121 1070 4891 21685 3972

SwingSimple 1 10 40 155 1240 5106 21681 4033

SwingRational 1 8 35 134 1003 5106 22706 4141
SwingDouble 1 7 34 127 843 4502 19761 3610

BoitenSplit 1 8 37 146 1194 5172 25189 4535

ProductRecursive 1 7 33 133 1165 5113 22726 4168
SquaredDiff 1 11 43 170 1314 5675 30995 5458

5. Conclusion

As a result, the developed algorithm factorial, at worst situation, decreases the

multiplication number, which is necessary for the number to be calculated, to the half. By this

way, the calculations at high speed can be done. The tests have been done according to 11

algorithms and newly developed algorithm. 11 algorithms used for comparison are not the

F. Cihan et. al. /BALKANJM 01 (2013) 13-27

26

fast factorial calculation algorithms based on prime numbers. According to the tests done,

newly developed algorithm factorial calculates the results of the numbers that will be

calculated in a fastest way. If the complexity of algorithm is shown via Theta notation, it will

be as Θ n
4() .

F. Cihan et. al. /BALKANJM 01 (2013) 13-27

27

References

[1] Cormen, T. H., Leiserson, C.E., Rivest, R. L., Stein, C., “Introductions to algorithms”, 2nd Ed.,
The MIT Press, 2001, Printed and bound in the United States of America.ISBN 0-262-03293-7
(hc.: alk. Paper, MIT Press).ISBN 0-07-013151-1 (McGraw-Hill).

[2] N. L. Biggs, (1979) “The roots of combinatorics, Historia Math. 6”, pp. 109−136.
[3] Higgins, Peter (2008), “Number Story: From Counting to Cryptography”, New York: Copernicus,

p.p 12, ISBN 978-1-84800-000-1 says Krempe though.
[4] Peter Borwein. "On the Complexity of Calculating Factorials". Journal of Algorithms 6,
[5] Sedgewick, R., (1992) “Algorithms in C++”. Addison-Wesley.
[6] Ugur, A.;Thompson, H., “The p-sized partitioning algorithm for fast computation of factorials of

numbers”, The Journal of Supercomputing, 38(1)/October, 2006, pp. 73-82.
[7] BoitenA. (1992) “Factorisation of the factorial-An example of inverting the flow of computation”.

Periodica Polytechnica Ser El Eng 35(2):pp. 77–99.
[8] Peter Luschny, Fast Factorial Functions, http://www.luschny.de/math/factorial/FastFactorial

Functions.htm, [Accessed: 21.07.2011].
[9] Albahari, J, Albahari, B., “C# 4.0 In a Nutshell”, 4th Ed., O’Reilly Media, 2010,

ISBN: 978-0-596-80095-6.

